【題目】若[x]表示不超過(guò)x的最大整數(shù),則[lg2]+[lg3]+…+lg[2017]+[lg ]+[lg ]+…+[lg ]= .
【答案】-2013
【解析】解:當(dāng)2≤n≤9時(shí),[lgn]=0,
當(dāng)10≤n≤99時(shí),[lgn]=1,
當(dāng)100≤n≤999時(shí),[lgn]=2,
當(dāng)1000≤n≤9999時(shí),[lgn]=3,
故[lg2]+[lg3]+…+[lg2016]+[2017]
=0×8+1×90+2×900+3×1018
=90+1800+3054
=4944;
當(dāng) ≤ ≤ ,[lg ]=﹣1;
當(dāng) ≤ ≤ 時(shí),[lg ]=﹣2;
當(dāng) ≤ ≤ 時(shí),[lg ]=﹣3;
當(dāng) ≤ ≤ 時(shí),[lg ]=﹣4.
則[lg ]+[lg ]+…+[lg ]
=(﹣1)×9+(﹣2)×90+(﹣3)×900+(﹣4)×1017
=﹣6957,
故原式=4944﹣6957=﹣2013.
所以答案是:﹣2013.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)列的前n項(xiàng)和(數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若在定義域內(nèi)存在實(shí)數(shù)x0使得f(x0+1)=f(x0)+f(1)成立則稱函數(shù)f(x)有“溜點(diǎn)x0”
(1)若函數(shù) 在(0,1)上有“溜點(diǎn)”,求實(shí)數(shù)m的取值范圍;
(2)若函數(shù)f(x)=lg( )在(0,1)上有“溜點(diǎn)”,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為比較甲,乙兩地某月14時(shí)的氣溫,隨機(jī)選取該月中的5天,將這5天中14時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:
①甲地該月14時(shí)的平均氣溫低于乙地該月14時(shí)的平均氣溫;
②甲地該月14時(shí)的平均氣溫高于乙地該月14時(shí)的平均氣溫;
③甲地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差小于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差;
④甲地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差大于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差.
其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的編號(hào)為( )
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為四棱錐P﹣ABCD的表面展開圖,四邊形ABCD為矩形, ,AD=1.已知頂點(diǎn)P在底面ABCD上的射影為點(diǎn)A,四棱錐的高為 ,則在四棱錐P﹣ABCD中,PC與平面ABCD所成角的正切值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD為直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,過(guò)AD的平面分別交PB,PC于M,N兩點(diǎn).
(1)求證:MN∥BC;
(2)若M,N分別為PB,PC的中點(diǎn),
①求證:PB⊥DN;
②求二面角P﹣DN﹣A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|2x≥16},B={x|log2x≥a}.
(1)當(dāng)a=1時(shí),求A∩B;
(2)若A是B的子集,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐A﹣BCDE中,底面BCDE為矩形,側(cè)面ABC⊥底面BCDE,BC=2,CD= ,AB=AC.
(1)證明:AD⊥CE;
(2)設(shè)CE與平面ABE所成的角為45°,求二面角C﹣AD﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2014年“五一節(jié)”期間,高速公路車輛較多,交警部門通過(guò)路面監(jiān)控裝置抽樣調(diào)查某一山區(qū)路段汽車行駛速度,采用的方法是:按到達(dá)監(jiān)控點(diǎn)先后順序,每隔50輛抽取一輛,總共抽取120輛,分別記下其行車速度,將行車速度(km/h)分成七段[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),[90,95)后得到如圖所示的頻率分布直方圖,據(jù)圖解答下列問(wèn)題:
(1)求a的值,并說(shuō)明交警部門采用的是什么抽樣方法?
(2)求這120輛車行駛速度的眾數(shù)和中位數(shù)的估計(jì)值(精確到0.1);
(3)若該路段的車速達(dá)到或超過(guò)90km/h即視為超速行駛,試根據(jù)樣本估計(jì)該路段車輛超速行駛的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com