已知橢圓的中心是坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且橢圓過(guò)點(diǎn)三點(diǎn).
(1)求橢圓的方程;
(2)若點(diǎn)為橢圓上不同于的任意一點(diǎn),,求內(nèi)切圓的面積的最大值,并指出其內(nèi)切圓圓心的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分15分 )已知橢圓經(jīng)過(guò)點(diǎn),一個(gè)焦點(diǎn)是
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓軸的兩個(gè)交點(diǎn)為、,點(diǎn)在直線上,直線、分別與橢圓交于、兩點(diǎn).試問(wèn):當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),直線是否恒經(jīng)過(guò)定點(diǎn)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,是拋物線的焦點(diǎn),是拋物線上位于第一象限內(nèi)的任意一點(diǎn),過(guò)三點(diǎn)的圓的圓心為,點(diǎn)到拋物線的準(zhǔn)線的距離為.(Ⅰ)求拋物線的方程;(Ⅱ)是否存在點(diǎn),使得直線與拋物線相切于點(diǎn)若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)軸上,且焦距為,實(shí)軸長(zhǎng)為4
(Ⅰ)求橢圓的方程;
(Ⅱ)在橢圓上是否存在一點(diǎn),使得為鈍角?若存在,求出點(diǎn)的橫坐標(biāo)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)設(shè)橢圓的中心是坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,離心率e=,已知點(diǎn)P(0,)到這個(gè)橢圓上的點(diǎn)的最遠(yuǎn)距離是,求這個(gè)橢圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是橢圓的兩個(gè)焦點(diǎn),是橢圓上的點(diǎn),且
(1)求的周長(zhǎng);
(2)求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知點(diǎn)是圓上任意一點(diǎn),點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱。線段的中垂線分別與交于兩點(diǎn).
(1)求點(diǎn)的軌跡的方程;
(2)斜率為的直線與曲線交于兩點(diǎn),若為坐標(biāo)原點(diǎn)),試求直線上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線C:為拋物線上一點(diǎn),關(guān)于軸對(duì)稱的點(diǎn),為坐標(biāo)原點(diǎn).
(1)若,求點(diǎn)的坐標(biāo);
(2)若過(guò)滿足(1)中的點(diǎn)作直線交拋物線兩點(diǎn), 且斜率分別為,且,求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

在平面直角坐標(biāo)系中,曲線C:經(jīng)過(guò)伸縮變換后,所得曲線的焦點(diǎn)坐標(biāo)為(   ).

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案