命題p:對(duì)任意x∈R,2x+1>0的否定是(  )
A、?p:存在x0∈R,2x0+1≤0B、?p:存在x0∈R,2x0+1>0C、?p:不存在x0∈R,2x0+1≤0D、?p:對(duì)任意x∈R,2x+1≤0
分析:根據(jù)全稱(chēng)命題的否定是特稱(chēng)命題進(jìn)行否定即可.
解答:解:∵命題p是全稱(chēng)命題,
∴¬p:存在x0∈R,2x0+1≤0
故選:A.
點(diǎn)評(píng):本題主要考查含有量詞的命題的否定,特稱(chēng)命題的否定是全稱(chēng)命題,全稱(chēng)命題的否定是特稱(chēng)命題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p;對(duì)任意x∈R,2x2-2x+1≤0;命題q:存在x∈R,sinx+cosx=
2
,則下列判斷:①p且q是真命題;②p或q是真命題;③q是假命題;④?p是真命題,其中正確的是( 。
A、①④B、②③C、③④D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩個(gè)命題p:對(duì)任意x∈R,都有sinx+cosx≤
3
2
;q:若a,b,c為實(shí)數(shù),則b2=ac是a,b,c成等比數(shù)列的充要條件,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:對(duì)任意x∈R,有cosx≤1,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下五個(gè)命題:
①y=cos(x-
π
4
)cos(x+
π
4
)的圖象中相鄰兩個(gè)對(duì)稱(chēng)中心的距離為π;
②y=
x+3
x-1
的圖象關(guān)于點(diǎn)(-1,1)對(duì)稱(chēng);
③關(guān)于x的方程ax2-2ax-1=0有且僅有一個(gè)實(shí)根,則a=-1
④命題P:對(duì)任意x∈R,都有sinx≤1;則¬p:存在x∈R,使得sinx>1;
⑤函數(shù)y=3x+3-x(x<0)的最小值為2.其中真命題的序號(hào)是
③④
③④

查看答案和解析>>

同步練習(xí)冊(cè)答案