年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
OP |
OQ |
OR |
AM |
AE |
AF |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
OP |
OQ |
OR |
AM |
AE |
AF |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在平面向量中有如下定理:設(shè)點(diǎn)O,P,Q,R為同一平面內(nèi)的點(diǎn),則P、Q、R三點(diǎn)共線的充要條件是:存在實(shí)數(shù)t,使.試?yán)迷摱ɡ斫獯鹣铝袉栴}:如圖,
在ΔABC中,點(diǎn)E為AB邊的中點(diǎn),點(diǎn)F在AC邊上,且CF=2FA,BF交CE于點(diǎn)M,設(shè),則x+y= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年湖北省高一下學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題
(本小題13分) 如圖所示, PQ為平面的交線, 已知二面角為直二面角, , ∠BAP=45°.
(1)證明: BC⊥PQ;
(2)設(shè)點(diǎn)C在平面內(nèi)的射影為點(diǎn)O, 當(dāng)k取何值時(shí), O在平面ABC內(nèi)的射影G恰好為△ABC的重心?
(3)當(dāng)時(shí), 求二面角B-AC-P的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com