【題目】函數(shù)f(x)=6cos2 + sinωx﹣3(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B、C為圖象與x軸的交點(diǎn),且△ABC為正三角形.

(1)求ω的值及函數(shù)f(x)的值域;
(2)若f(x0)= ,且x0∈(﹣ , ),求f(x0+1)的值.

【答案】
(1)解:由已知得f(x)=6cos2 + sinωx﹣3

=3cosωx+ sinωx=2 sin(ωx+

又△ABC為正三角形,且高為2 ,可得BC=4.

∴函數(shù)f(x)的最小正周期為8,即 =8,

解得ω= ,∴f(x)=2 sin( x+ ),

∴函數(shù)f(x)的值域?yàn)椋篬﹣2 ,2 ];


(2)解:∵f(x0)= ,

∴2 sin( x0+ )=

故sin( x0+ )= ,

∵x0∈(﹣ , ),∴ x0+ ∈(﹣ , ),

∴cos( x0+ )= =

∴f(x0+1)=2 sin( x0+ +

=2 × [sin( x0+ )+cos( x0+ )]=


【解析】(1)變形可得f(x)=2 sin(ωx+ ),由又由三角形的知識(shí)和周期公式可得ω= ,由振幅的意義可得值域;(2)由已知和(1)的解析式可得sin( x0+ )= ,進(jìn)而由角的范圍和同角三角函數(shù)基本關(guān)系可得cos( x0+ )= ,代入f(x0+1)=2 sin( x0+ + )=2 × [sin( x0+ )+cos( x0+ )]計(jì)算可得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x﹣(a+1)lnx﹣ ,其中a∈R.
(Ⅰ)求證:當(dāng)a=1時(shí),函數(shù)y=f(x)沒(méi)有極值點(diǎn);
(Ⅱ)求函數(shù)y=f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列{an},a1=1,an=an+12+2an+1(Ⅰ)求證:數(shù)列{log2(an+1)}為等比數(shù)列:
(Ⅱ)設(shè)bn=n1og2(an+1),數(shù)列{bn}的前n項(xiàng)和為Sn , 求證:1≤Sn<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xlnx.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若對(duì)任意 恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B兩名同學(xué)在5次數(shù)學(xué)考試中的成績(jī)統(tǒng)計(jì)如下面的莖葉圖所示,若A,B兩人的平均成績(jī)分別是xA , xB , 觀察莖葉圖,下列結(jié)論正確的是(
A.xA<xB , B比A成績(jī)穩(wěn)定
B.xA>xB , B比A成績(jī)穩(wěn)定
C.xA<xB , A比B成績(jī)穩(wěn)定
D.xA>xB , A比B成績(jī)穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足對(duì)任意的都有,且

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)數(shù)列的前項(xiàng)和為,不等式對(duì)任意的正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年3月14日,“ofo共享單車”終于來(lái)到蕪湖,ofo共享單車又被親切稱作“小黃車”是全球第一個(gè)無(wú)樁共享單車平臺(tái),開(kāi)創(chuàng)了首個(gè)“單車共享”模式.相關(guān)部門準(zhǔn)備對(duì)該項(xiàng)目進(jìn)行考核,考核的硬性指標(biāo)是:市民對(duì)該項(xiàng)目的滿意指數(shù)不低于0.8,否則該項(xiàng)目需進(jìn)行整改,該部門為了了解市民對(duì)該項(xiàng)目的滿意程度,隨機(jī)訪問(wèn)了使用共享單車的100名市民,并根據(jù)這100名市民對(duì)該項(xiàng)目滿意程度的評(píng)分,繪制了如下頻率分布直方圖: (I)為了了解部分市民對(duì)“共享單車”評(píng)分較低的原因,該部門從評(píng)分低于60分的市民中隨機(jī)抽取2人進(jìn)行座談,求這2人評(píng)分恰好都在[50,60)的概率;
(II)根據(jù)你所學(xué)的統(tǒng)計(jì)知識(shí),判斷該項(xiàng)目能否通過(guò)考核,并說(shuō)明理由.
(注:滿意指數(shù)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)求證:

(Ⅲ)判斷曲線是否位于軸下方,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算
(1)lg 8+lg 125﹣( 2+16 +( ﹣1)0
(2)已知tanα=3,求 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案