如圖,在三棱錐中,平面平面,,.設(shè),分別為,中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面;
(Ⅲ)試問在線段上是否存在點(diǎn),使得過三點(diǎn) ,,的平面內(nèi)的任一條直線都與平面平行?若存在,指出點(diǎn)的位置并證明;若不存在,請(qǐng)說明理由.
(Ⅰ)詳見解析;(Ⅱ)詳見解析;(Ⅲ)存在,點(diǎn)是線段中點(diǎn)。
解析試題分析:(Ⅰ)由中位線直接可得∥,由線面平行的判定定理可直接證得∥平面。(Ⅱ)根據(jù)線面垂直的判定定理需證和面內(nèi)的兩條相交直線都垂直。已知條件中已有,又因?yàn)橐阎矫?img src="http://thumb.zyjl.cn/pic5/tikupic/af/5/1pyf73.png" style="vertical-align:middle;" />平面,,由面面垂直的性質(zhì)定理可得面,有線面垂直可得線線垂直。問題即可得證。(Ⅲ)要使得過三點(diǎn) ,,的平面內(nèi)的任一條直線都與平面平行,只需證面DEF與面PBC平行即可。根據(jù)面面平行的定理,需證面DEF內(nèi)的兩條相交線都和面PBC平行。第一問中已征得∥平面,根據(jù)第一問的思路,F(xiàn)別為AB的中點(diǎn),就可同(Ⅰ)證出PF與面PBC平行。
試題解析:證明:
(Ⅰ)因?yàn)辄c(diǎn)是中點(diǎn),點(diǎn)為的中點(diǎn),
所以∥.
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e0/8/1w4ds3.png" style="vertical-align:middle;" />面,面,
所以∥平面. 4分
(Ⅱ)因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic5/tikupic/af/5/1pyf73.png" style="vertical-align:middle;" />面, 平面平面=,又平面,,所以面.
所以.
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/dc/a/1l4xo3.png" style="vertical-align:middle;" />,且,
所以面. 9分
(Ⅲ)當(dāng)點(diǎn)是線段中點(diǎn)時(shí),過點(diǎn),,的平面內(nèi)的任一條直線都與平面平行.
取中點(diǎn),連,連.
由(Ⅰ)可知∥平面.
因?yàn)辄c(diǎn)是中點(diǎn),點(diǎn)為的中點(diǎn),
所以∥.
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6a/d/3ji9a.png" style="vertical-align:middle;" />平面,平面,
所以∥平面.
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0b/3/1edhw2.png" style="vertical-align:middle;" />,
所以平面∥平面,
所以平面內(nèi)的任一條直線都與平面平行.
故當(dāng)點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三棱柱中,平面⊥平面ABC,BC⊥AC,D為AC的中點(diǎn),AC=BC=AA1=A1C=2。
(Ⅰ)求證:AC1⊥平面A1BC;
(Ⅱ)求平面AA1B與平面A1BC的夾角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正三棱柱ABC-A'B'C'中,D是BC的中點(diǎn),AA'=AB=2.
(1)求證:A'C//平面AB'D;
(2)求二面角D一AB'一B的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,側(cè)棱AA1⊥面ABC,D、E分別是棱A1B1、AA1的中點(diǎn),點(diǎn)F在棱AB上,且
(I)求證:EF∥平面BDC1;
(II)求二面角E-BC1-D的余弦值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com