已知橢圓的方程為
x2
9
+
y2
4
=1
,則該橢圓的長(zhǎng)半軸長(zhǎng)為(  )
A.3B.2C.6D.4
橢圓的方程為
x2
9
+
y2
4
=1
中a=3,b=2
∴該橢圓的長(zhǎng)半軸長(zhǎng)為3
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

以橢圓上任意一點(diǎn)與焦點(diǎn)所連接的線段為直徑的圓與以長(zhǎng)軸為直徑的圓的位置關(guān)系是( 。
A.相離B.相交C.內(nèi)切D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線y=
3
2
x
與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的交點(diǎn)在長(zhǎng)軸上的射影恰好為橢圓的焦點(diǎn),則橢圓的離心率是( 。
A.
2
2
B.2C.
2
-1
D.
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓
x2
16
+
y2
9
=1
的左、右焦點(diǎn)為F1、F2,一直線過F1交橢圓于A、B,則△ABF2的周長(zhǎng)為( 。
A.8B.14C.16D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別是F1,F(xiàn)2,過F2作傾斜角為120°的直線與橢圓的一個(gè)交點(diǎn)為M,若MF1垂直于x軸,則橢圓的離心率為(  )
A.
12-2
3
11
B.2-
3
C.2(2-
3
D.
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)P是橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)
上的點(diǎn),F(xiàn)1,F(xiàn)2是其焦點(diǎn),若|PO|是|PF1|、|PF2|的等差中項(xiàng),則P點(diǎn)的個(gè)數(shù)是( 。
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的中心在原點(diǎn),一個(gè)焦點(diǎn)與拋物線y2=8x的焦點(diǎn)重合,一個(gè)頂點(diǎn)的坐標(biāo)為
0,2
,則此橢圓方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

21、已知|
EF
|=2c,|
EF
|=2a(a>c),2
EH
=
EG
,2
EO
=
EF
HP
EG
=0(G為動(dòng)點(diǎn))(a>c).
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求出點(diǎn)P的軌跡方程;
(2)若點(diǎn)P的軌跡上存在兩個(gè)不同的點(diǎn)A、B,且線段AB的中垂線與EF(或EF的延長(zhǎng)線)有唯一的交點(diǎn)C,證明:|
OC
|<
c2
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線=1(a>0,b>0)上不存在點(diǎn)P,使得右焦點(diǎn)F關(guān)于直線OP(O為雙曲線的中心)的對(duì)稱點(diǎn)在y軸上,則該雙曲線離心率的取值范圍為(  )
A.(,+∞) B.[,+∞)
C.(1,]D.(1,)

查看答案和解析>>

同步練習(xí)冊(cè)答案