如圖,已知直線l與拋物線相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,O為坐標(biāo)原點(diǎn),定點(diǎn)B的坐標(biāo)為(2,0).
(1)若動(dòng)點(diǎn)M滿足,求動(dòng)點(diǎn)M的軌跡C的方程;
(2)若過(guò)點(diǎn)B的直線l'(斜率不等于零)與(1)中的軌跡C交于不同
的兩點(diǎn)E、F(E在B、F之間),且,試求λ的取值范圍.

【答案】分析:(1)由,知,所以l的斜率為y'x=2=1,從而得到直線l的方程為y=x-1,點(diǎn)A坐標(biāo)為A(1,0),由此能求出動(dòng)點(diǎn)M的軌跡C的方程.
(2)由題意,設(shè)l'的方程為y=k(x-2)(k≠0),由,得(2k2+1)x2-8k2x+8k2-2=0.由△>0得.設(shè)E(x1,y1),F(xiàn)(x2,y2),再結(jié)合韋達(dá)定理進(jìn)行求解.
解答:解:(1)∵,∴
∴l(xiāng)的斜率為y'x=2=1
∴直線l的方程為y=x-1
∴點(diǎn)A坐標(biāo)為A(1,0)
設(shè)M(x、y),


整理得--------(6分)
(2)由題意,設(shè)l'的方程為y=k(x-2)(k≠0)

得(2k2+1)x2-8k2x+8k2-2=0由△>0得
設(shè)E(x1,y1),F(xiàn)(x2,y2),

,
∴x1-2=λ(x2-2)②
且0<λ<1
由①知,

由②③④知:


,

解得  
又0<λ<1
--------------(14分)
點(diǎn)評(píng):本題考查動(dòng)點(diǎn)的軌跡的求解方法和求λ的取值范圍.解題時(shí)要認(rèn)真審題,注意拋物線性質(zhì)的靈活運(yùn)用和韋達(dá)定理的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知直線l與拋物線x2=4y相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,O為坐標(biāo)原點(diǎn),定點(diǎn)B的坐標(biāo)為(2,0).
(1)若動(dòng)點(diǎn)M滿足
AB
BM
+
2
|
AM
|
=0,求動(dòng)點(diǎn)M的軌跡Q;
(2) F1,F(xiàn)2是軌跡Q的左、右焦點(diǎn),過(guò)F1作直線l(不與x軸重合),l與軌跡Q相交于C,D,并與圓x2+y2=3相交于E,F(xiàn).當(dāng)
F2E
F2F
,且λ∈[
2
3
,1]時(shí),求△F2CD的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知直線l與拋物線y=
1
4
x2
相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,O為坐標(biāo)原點(diǎn),定點(diǎn)B的坐標(biāo)為(2,0).
(1)若動(dòng)點(diǎn)M滿足
AB
BM
+
2
|
AM
|=0
,求動(dòng)點(diǎn)M的軌跡C的方程;
(2)若過(guò)點(diǎn)B的直線l'(斜率不等于零)與(1)中的軌跡C交于不同
的兩點(diǎn)E、F(E在B、F之間),且
BE
BF
,試求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知直線l與拋物線x2=4y相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,定點(diǎn)B的坐標(biāo)為(2,0).
(I)若動(dòng)點(diǎn)M滿足
AB
BM
+
2
|
AM
|=0
,求點(diǎn)M的軌跡C;
(Ⅱ)若過(guò)點(diǎn)B的直線l′(斜率不等于零)與(I)中的軌跡C交于不同的兩點(diǎn)E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線l與拋物線y2=x相交于A(x1,y1),B(x2,y2)兩點(diǎn),與x軸相交于點(diǎn)M,若y1y2=-1,
(1)求證:OA⊥OB;
(2)M點(diǎn)的坐標(biāo)為(1,0),求△AOB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省兗州市高三第三次模擬考試?yán)砜茢?shù)學(xué)卷 題型:解答題

如圖,已知直線l與拋物線相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,O為坐標(biāo)原點(diǎn),定點(diǎn)B的坐標(biāo)為(2,0).

(I) 若動(dòng)點(diǎn)M滿足,求點(diǎn)M的軌跡C;

(II)若過(guò)點(diǎn)B的直線l′(斜率不等于零)與(I)中的軌跡C交于不同的兩點(diǎn)E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍

 

查看答案和解析>>

同步練習(xí)冊(cè)答案