已知函數(shù)               

試題分析:,,所以
點(diǎn)評(píng):在分段函數(shù)中,不管是求出函數(shù)值,還是求出自變量,需分清自變量的范圍。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)[x]表示不大于x的最大整數(shù), 則對(duì)任意實(shí)數(shù)x, y, 有 (    )
A.[-x] = -[x]B.[2x] = 2[x]
C.[x+y]≤[x]+[y]D.[x-y]≤[x]-[y]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)f(x)=(x+a)(bx+2a)(a、b∈R)是偶函數(shù),且它的值域?yàn)?-∞,4],則該函數(shù)的解析式f(x)=    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=(m為常數(shù)0<m<1),且數(shù)列{f()}是首項(xiàng)為2,公差為2的等差數(shù)列.
(1)f(),當(dāng)m=時(shí),求數(shù)列{}的前n項(xiàng)和;
(2)設(shè)·,如果{}中的每一項(xiàng)恒小于它后面的項(xiàng),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

探究函數(shù)f(x)=x+,x∈(0,+∞)的最小值,并確定取得最小值時(shí)x的值.列表如下:
x

0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7

y

8.5
5
4.17
4.05
4.005
4
4.005
4.02
4.04
4.3
5
5.8
7.57

請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成以下的問題.
函數(shù)f(x)=x+(x>0)在區(qū)間(0,2)上遞減;
(1)函數(shù)f(x)=x+(x>0)在區(qū)間                  上遞增.
當(dāng)x=                 時(shí),y最小=                         .
(2)證明:函數(shù)f(x)=x+在區(qū)間(0,2)上遞減.
(3)思考:函數(shù)f(x)=x+(x<0)有最值嗎?如果有,那么它是最大值還是最小值?此時(shí)x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列各組函數(shù)中,表示同一函數(shù)的是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若f(x)是偶函數(shù),g(x)是奇函數(shù),且,求f(x)和g(x)的解析式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)=log)為奇函數(shù),a為常數(shù).
(Ⅰ)求a的值;
(Ⅱ)證明f(x)在(1,+∞)內(nèi)單調(diào)遞增;
(Ⅲ)若對(duì)于[3,4]上的每一個(gè)的值,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax3+bx2-x(x∈R,a、b是常數(shù),a≠0),且當(dāng)x=1和x=2時(shí),函數(shù)f(x)取得極值.(I)求函數(shù)f(x)的解析式;
(Ⅱ)若曲線y=f(x)與g(x)=有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案