(滿(mǎn)分15分)已知橢圓(a>b>0)的離心率,過(guò)點(diǎn)A(0,-b)和B(a,0)的直線(xiàn)與原點(diǎn)的距離為
(1)求橢圓的方程
(2)已知定點(diǎn)E(-1,0),若直線(xiàn)y=kx+2(k≠0)與橢圓交于C D兩點(diǎn) 問(wèn):是否存在k的值,使以CD為直徑的圓過(guò)E點(diǎn)?請(qǐng)說(shuō)明理由
(1);(2)存在,使得以CD為直徑的圓過(guò)點(diǎn)E.
【解析】第一問(wèn)中利用A(0,-b)和B(a,0)的坐標(biāo),設(shè)出直線(xiàn)方程,然后利用橢圓的性質(zhì)得到
然后求解得到a,b的值。從而得到橢圓方程
第二問(wèn)中,聯(lián)立方程組,直線(xiàn)與橢圓聯(lián)立得到關(guān)于x的一元二次方程,利用韋達(dá)定理,以及以CD為直徑的圓過(guò)E點(diǎn),即當(dāng)且僅當(dāng)CE⊥DE時(shí),可知k的值。
解:(1)直線(xiàn)AB方程為:bx-ay-ab=0 依題意 解得
∴ 橢圓方程為 ………………6分
(2)假若存在這樣的k值,由得
∴ 、
設(shè), ,,則 ②
而 ………………10分
要使以CD為直徑的圓過(guò)點(diǎn)E(-1,0),當(dāng)且僅當(dāng)CE⊥DE時(shí),則,即 ∴ ③
將②式代入③整理解得 經(jīng)驗(yàn)證,,使①成立
綜上可知,存在,使得以CD為直徑的圓過(guò)點(diǎn)E ………………15分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿(mǎn)分15分)
如圖,四邊形為矩形,點(diǎn)的坐標(biāo)分別為、,點(diǎn)在上,坐標(biāo)為,橢圓分別以、為長(zhǎng)、短半軸,是橢圓在矩形內(nèi)部的橢圓弧.已知直線(xiàn)與橢圓弧相切,且與相交于點(diǎn).
(Ⅰ)當(dāng)時(shí),求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)圓在矩形內(nèi)部,且與和線(xiàn)段EA都相切,若直線(xiàn)將矩形分成面積相等的兩部分,求圓M面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿(mǎn)分15分)
如圖,四邊形為矩形,點(diǎn)的坐標(biāo)分別為、,點(diǎn)在上,坐標(biāo)為,橢圓分別以、為長(zhǎng)、短半軸,是橢圓在矩形內(nèi)部的橢圓。阎本(xiàn)與橢圓弧相切,且與相交于點(diǎn).
(Ⅰ)當(dāng)時(shí),求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)圓在矩形內(nèi)部,且與和線(xiàn)段EA都相切,若直線(xiàn)將矩形分成面積相等的兩部分,求圓M面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com