設(shè)函數(shù)f(x)=a·b,其中向量a=(2cosx,1),b=(cosx,sin2x+m).

(1)求函數(shù)f(x)的最小正周期和在[0,π]上的單調(diào)遞增區(qū)間.

(2)當(dāng)x∈[0,]時(shí),-4<f(x)<4恒成立,求實(shí)數(shù)m的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a-|x|(a>0且a≠1),若f(2)=4,則f(-2)與f(1)的大小關(guān)系是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量a=(cosx,sinx),b=(cos,sin),c=(,-1),其中x∈R,

(1)當(dāng)a·b=時(shí),求x值的集合;

(2)設(shè)函數(shù)f(x)=(a-c)2,求f(x)的最小正周期及其單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量a=(cosx,sinx),b=(cos,sin),c=(,-1),其中x∈R,

(1)當(dāng)a·b=時(shí),求x值的集合;

(2)設(shè)函數(shù)f(x)=(a-c)2,求f(x)的最小正周期及其單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆黑龍江省高一上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

(本題滿分12分)設(shè)函數(shù)f(x)=a·b,其中向量a=(2cosx,1),b=(cosx,sin2x+m).

(1)求函數(shù)f(x)的最小正周期和在[0,π]上的單調(diào)遞增區(qū)間.

(2)當(dāng)x∈時(shí),-4<f(x)<4恒成立,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a-|x|(a>0且a≠1),若f(2)=4,則f(-2)與f(1)的大小關(guān)系是    .

查看答案和解析>>

同步練習(xí)冊(cè)答案