【題目】如圖,在底面是菱形的四棱錐中, 平面, ,點分別為的中點,設直線與平面交于點.
(1)已知平面平面,求證: .
(2)求直線與平面所成角的正弦值.
【答案】(1)見解析(2).
【解析】試題分析:(1)由三角形中位線定理可得,利用線面平行的判定定理可得平面,在根據(jù)線面平行的性質定理可得;(2)由勾股定理可得 , ∵平面,由此可以點為原點,直線分別為軸建立空間直角坐標系,利用兩直線垂直數(shù)量積為零列出方程組,分別求出直線的方向向量與平面的法向量,利用空間向量夾角余弦公式.
試題解析:(1)∵, 平面, 平面.
∴平面,
∵平面,平面平面
∴.
(2)∵底面是菱形, 為的中點 ∴
∴ ∵平面,則以點為原點,直線分別為軸建立如圖所示空間直角坐標系則
∴, ,
設平面的法向量為,有得
設,則,
則解之得,∴,
設直線與平面所成角為
則
∴直線與平面所成角的正弦值為.
【方法點晴】本題主要考查線面平行的性質與判定以及利用空間向量求線面角,屬于難題. 空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當?shù)目臻g直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據(jù)定理結論求出相應的角和距離.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中, ,動點滿足:以為直徑的圓與軸相切.
(1)求點的軌跡方程;
(2)設點的軌跡為曲線,直線過點且與交于兩點,當與的面積之和取得最小值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】地為綠化環(huán)境,移栽了銀杏樹棵,梧桐樹棵.它們移栽后的成活率分別
為、,每棵樹是否存活互不影響,在移栽的棵樹中:
(1)求銀杏樹都成活且梧桐樹成活棵的概率;
(2)求成活的棵樹的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨機抽取100名學生,測得他們的身高(單位: ),按照區(qū)間,
分組,得到樣本身高的頻率分布直方圖(如圖).
(1)求頻率分布直方圖中的值及身高在以上的學生人數(shù);
(2)將身高在區(qū)間內的學生依次記為三個組,用分層抽樣的方法從這三個組中抽取6人,求從這三個組分別抽取的學生人數(shù);
(3)在(2)的條件下,要從6名學生中抽取2人.用列舉法計算組中至少有1人被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左焦點與拋物線 的焦點重合,橢圓的離心率為,過點作斜率不為0的直線,交橢圓于兩點,點,且為定值.
(1)求橢圓的方程;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求證:函數(shù)是偶函數(shù);
(2)設,求關于的函數(shù)在時的值域的表達式;
(3)若關于的不等式在時恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com