是雙曲線與圓的一個交點,且,其中分別為雙曲線C1的左右焦點,則雙曲線的離心率為(     )
A.B.C.D.
A

試題分析:由題意知,雙曲線的焦點分別為,其中,且.不妨設(shè).又因為,根據(jù)大邊對大角原則,.又因為點是雙曲線與圓的一個交點,所以點在雙曲線右支上,根據(jù)對稱性,不妨設(shè)點在第一象限.,所以在圓上,且為圓直徑. ,,, ,可求得,代入中,化簡得,與聯(lián)立,得,得,所以,又,所以,,所以,即雙曲線離心率為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,為坐標(biāo)原點,如果一個橢圓經(jīng)過點P(3,),且以點F(2,0)為它的一個焦點.
(1)求此橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)中求過點F(2,0)的弦AB的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系上取兩個定點,再取兩個動點
(I)求直線交點的軌跡的方程;
(II)已知,設(shè)直線:與(I)中的軌跡交于、兩點,直線、 的傾斜角分別為,求證:直線過定點,并求該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左右焦點分別是,離心率,為橢圓上任一點,且的最大面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)斜率為的直線交橢圓兩點,且以為直徑的圓恒過原點,若實數(shù)滿足條件,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

以點F1(-1,0),F(xiàn)2(1,0)為焦點的橢圓C經(jīng)過點(1,)。
(I)求橢圓C的方程;
(II)過P點分別以為斜率的直線分別交橢圓C于A,B,M,N,求證: 使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的右焦點為,過點的直線交橢圓于兩點.若的中點坐標(biāo)為,則的方程為  ( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線的焦點F作一直線l交拋物線于A、B兩點,以AB為直徑的圓與該拋物線的準(zhǔn)線l的位置關(guān)系為(     )
A. 相交 B. 相離 C. 相切 D. 不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)圓和圓是兩個定圓,動圓P與這兩個定圓都相切,則圓P的圓心軌跡可能是(   )

              
①              ②           ③              ④            ⑤
A.①③⑤B.②④⑤C.①②④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示:已知過拋物線的焦點F的直線與拋物線相交于A,B兩點。

(1)求證:以AF為直徑的圓與x軸相切;
(2)設(shè)拋物線在A,B兩點處的切線的交點為M,若點M的橫坐標(biāo)為2,求△ABM的外接圓方程;
(3)設(shè)過拋物線焦點F的直線與橢圓的交點為C、D,是否存在直線使得,若存在,求出直線的方程,若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案