【題目】已知雙曲線的左、右焦點分別、,過的直線交雙曲線右支于,兩點.的平分線交于,若,則雙曲線的離心率為( )
A.B.2C.D.
【答案】A
【解析】
首先取中點,連接,,利用平面向量加法的幾何意義得到軸,,再根據(jù)勾股定理列出等式,計算離心率即可.
取中點,連接,,如圖所示:
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/18/2487522753945600/2488179565289472/EXPLANATION/0643573483c14d6289b6f64992bd8c2c.png]
由,可知四邊形為平行四邊形.
又∵為的平分線,∴四邊形為菱形.
∵,∴為中點,
∵,∴為中點,
由雙曲線的對稱性可知:軸,點在軸上.
∴,
由雙曲線定義得:,
所以,
∴,即,
整理得,所以.
故選:A
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PCD⊥平面ABCD,AB=2,BC=1,,E為PB中點.
(Ⅰ)求證:PD∥平面ACE;
(Ⅱ)求證:PD⊥平面PBC;
(Ⅲ)求三棱錐E-ABC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,過定點的直線l與橢圓E相交于A,B兩點,C為橢圓的左頂點,當直線l過點時,(O為坐標原點)的面積為.
(1)求橢圓E的方程;
(2)求證:當直線l不過C點時,為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)+B的部分圖象如圖所示,其中A>0,ω>0,|φ|.
(Ⅰ)求函數(shù)y=f(x)解析式;
(Ⅱ)求x∈[0,]時,函數(shù)y=f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐D-ABC中為銳角三角形,平面ACD⊥平面.
(1)求證:CD⊥平面ABC
(2)若直線BD與平面ACD所成角的正弦值為,求二面角D-AB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:的焦點為,過作斜率為的直線交于,兩點,以線段為直徑的圓.當時,圓的半徑為2.
(1)求的方程;
(2)已知點,對任意的斜率,圓上是否總存在點滿足,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在“挑戰(zhàn)不可能”的電視節(jié)目上,甲、乙、丙三個人組成的解密團隊參加一項解密挑戰(zhàn)活動,規(guī)則是由密碼專家給出題目,然后由個人依次出場解密,每人限定時間是分鐘內,否則派下一個人.個人中只要有一人解密正確,則認為該團隊挑戰(zhàn)成功,否則挑戰(zhàn)失敗.根據(jù)甲以往解密測試情況,抽取了甲次的測試記錄,繪制了如下的頻率分布直方圖.
(1)若甲解密成功所需時間的中位數(shù)為,求、的值,并求出甲在分鐘內解密成功的頻率;
(2)在“挑戰(zhàn)不可能”節(jié)目上由于來自各方及自身的心理壓力,甲,乙,丙解密成功的概率分別為,其中表示第個出場選手解密成功的概率,并且定義為甲抽樣中解密成功的頻率代替,各人是否解密成功相互獨立.
①求該團隊挑戰(zhàn)成功的概率;
②該團隊以從小到大的順序按排甲、乙、丙三個人上場解密,求團隊挑戰(zhàn)成功所需派出的人員數(shù)目的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某病毒研究所為了研究溫度對某種病毒的影響,在溫度t(℃)逐漸升高時,連續(xù)測20次病毒的活性指標值y,實驗數(shù)據(jù)處理后得到下面的散點圖,將第1~14組數(shù)據(jù)定為A組,第15~20組數(shù)據(jù)定為B組.
(Ⅰ)某研究員準備直接根據(jù)全部20組數(shù)據(jù)用線性回歸模型擬合y與t的關系,你認為是否合理?請從統(tǒng)計學的角度簡要說明理由.
(Ⅱ)若根據(jù)A組數(shù)據(jù)得到回歸模型,根據(jù)B組數(shù)據(jù)得到回歸模型,以活性指標值大于5為標準,估計這種病毒適宜生存的溫度范圍(結果精確到0.1).
(Ⅲ)根據(jù)實驗數(shù)據(jù)計算可得:A組中活性指標值的平均數(shù),方差;B組中活性指標值的平均數(shù),方差.請根據(jù)以上數(shù)據(jù)計算全部20組活性指標值的平均數(shù)和方差.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線上的點到的距離比它到直線的距離少3.
(1)求曲線的方程;
(2)過點且斜率為的直線交曲線于,兩點,交圓于,兩點,,在軸上方,過點,分別作曲線的切線,,,求與的面積的積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com