<mark id="lk4gm"><meter id="lk4gm"></meter></mark>

    已知直三棱柱中, , , 的交點, 若.

    (1)求的長;  (2)求點到平面的距離;

    (3)求二面角的平面角的正弦值的大小.

    【解析】本試題主要考查了距離和角的求解運用。第一問中,利用ACCA為正方形, AC=3

    第二問中,利用面BBCC內(nèi)作CDBC, 則CD就是點C平面ABC的距離CD=,第三問中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為

    解法一: (1)連AC交AC于E, 易證ACCA為正方形, AC=3 ……………  5分

    (2)在面BBCC內(nèi)作CDBC, 則CD就是點C平面ABC的距離CD= … 8分

    (3) 易得AC面ACB, 過E作EHAB于H, 連HC, 則HCAB

    CHE為二面角C-AB-C的平面角. ………  9分

    sinCHE=二面角C-AB-C的平面角的正弦大小為 ……… 12分

    解法二: (1)分別以直線CB、CC、CA為x、y為軸建立空間直角坐標(biāo)系, 設(shè)|CA|=h, 則C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

    =(2, -, -), =(0, -3, -h(huán))  ……… 4分

    ·=0,  h=3

    (2)設(shè)平面ABC得法向量=(a, b, c),則可求得=(3, 4, 0) (令a=3)

    點A到平面ABC的距離為H=||=……… 8分

    (3) 設(shè)平面ABC的法向量為=(x, y, z),則可求得=(0, 1, 1) (令z=1)

    二面角C-AB-C的大小滿足cos== ………  11分

    二面角C-AB-C的平面角的正弦大小為

     

    【答案】

    (1) AC=3 (2) CD=    (3)正弦大小為 

     

    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    已知直三棱柱中,,點N是的中點,求二面角的平面角的大小。

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省高二“零診”考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

    (12分)已知直三棱柱中,,點M是的中點,Q是AB的中點,

    (1)若P是上的一動點,求證:;

    (2)求二面角大小的余弦值.

     

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(重慶卷解析版) 題型:解答題

    已知直三棱柱中,,,的中點。(Ⅰ)求點C到平面的距離;(Ⅱ)若,求二面角的平面角的余弦值。

     

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:2013屆遼寧省瓦房店市高二上學(xué)期期末理科數(shù)學(xué)試卷 題型:解答題

    已知直三棱柱中,△為等腰直角三角形,∠=90°,且、、分別為、、的中點.

     

     

    (1)求證:∥平面;

    (2)求證:⊥平面

    (3)求二面角的余弦值

     

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:遼寧省撫順市六校聯(lián)合體2009-2010學(xué)年度高三二模(數(shù)學(xué)文)試題 題型:解答題

    如圖,已知直三棱柱中,為等腰直角三角形,,且,分別為的中點。

    (Ⅰ)求證://平面;

    (Ⅱ)求證:平面

     

    查看答案和解析>>

    同步練習(xí)冊答案