【題目】已知函數(shù) , (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間,并判斷是否有極值;
(Ⅱ)若對任意的x>1,恒有l(wèi)n(x﹣1)+k+1≤kx成立,求k的取值范圍;
(Ⅲ)證明: (n∈N+ , n≥2).
【答案】解:(Ⅰ) ,(x>0), , 即x∈(0,1),f'(x)>0,當x∈(1,+∞),f'(x)<0,
∴f(x)在區(qū)間(0,1)上單調(diào)遞增,在區(qū)間(1,+∞)上單調(diào)遞減,
在x=1處取得極大值,極大值為f(1)=1,無極小值.
(Ⅱ)方法1:∵ln(x﹣1)+k+1≤kx, ,
k≥f(x﹣1)max對任意的x>1恒成立,由(1)知f(x)max=f(1)=1,
則有f(x﹣1)max=1,∴k≥1.
方法2:記g(x)=ln(x﹣1)﹣k(x﹣1)+1,
,
當k≤0時,g'(x)≥0;
當k>0時,由g'(x)>0得 ,
即當k≤0時,g(x)在(1,+∞)上為增函數(shù);
當k>0時, 上為增函數(shù);在 上為減函數(shù).
∵對任意的x>1,恒有l(wèi)n(x﹣1)+k+1≤kx成立,
即要求g(x)≤0恒成立,
∴k>0符合,且 ,得k≥1.
(Ⅲ)證明: ,由(Ⅰ)知 ,
則 (當且僅當x=1取等號).
令x=n2(n∈N* , n≥2),即 ,則有
∴ ,
∴
【解析】(Ⅰ) ,(x>0), ,分別解出f'(x)>0,f'(x)<0,即可得出單調(diào)區(qū)間、極值;(Ⅱ)方法1:由ln(x﹣1)+k+1≤kx,分離參數(shù)可得:k≥f(x﹣1)max對任意的x>1恒成立,由(I)即可得出. 方法2:記g(x)=ln(x﹣1)﹣k(x﹣1)+1, ,對k分類討論研究其單調(diào)性即可得出;(Ⅲ) ,由(Ⅰ)知: (當且僅當x=1取等號).令x=n2(n∈N* , n≥2),即 ,再利用“累加求和”、“裂項求和”即可得出.
【考點精析】通過靈活運用利用導數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導數(shù),掌握一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x),(x∈R)上任一點(x0 , y0)的切線方程為y﹣y0=(x0﹣2)(x02﹣1)(x﹣x0),那么函數(shù)f(x)的單調(diào)遞減區(qū)間是( )
A.[﹣1,+∞)
B.(﹣∞,2]
C.(﹣∞,﹣1)和(1,2)
D.[2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,CAB=90°,AB=AC=2,AA1= ,M為BC的中點,P為側(cè)棱BB1上的動點.
(1)求證:平面APM⊥平面BB1C1C;
(2)試判斷直線BC1與AP是否能夠垂直.若能垂直,求PB的長;若不能垂直,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=x2﹣ax+1,x∈[﹣1,2].
(1)若函數(shù)f(x)為單調(diào)函數(shù),求a的取值范圍;
(2)求函數(shù)f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖正方體ABCD﹣A1B1C1D1 , M,N分別為A1D1和AA1的中點,則下列說法中正確的個數(shù)為( )
①C1M∥AC;
②BD1⊥AC;
③BC1與AC的所成角為60°;
④B1A1、C1M、BN三條直線交于一點.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩條直線l1:2x+y﹣2=0與l2:2x﹣my+4=0.
(1)若直線l1⊥l2 , 求直線l1與l2交點P的坐標;
(2)若l1 , l2以及x軸圍成三角形的面積為1,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一個遞增的等差數(shù)列{an}的前三項的和為﹣3,前三項的積為8.數(shù)列 的前n項和為 .
(1)求數(shù)列{an}的通項公式.
(2)求數(shù)列 的通項公式.
(3)是否存在一個等差數(shù)列{cn},使得等式 對所有的正整數(shù)n都成立.若存在,求出所有滿足條件的等差數(shù)列{cn}的通項公式,并求數(shù)列{bn}的前n項和Tn;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設Ox、Oy是平面內(nèi)相交成45°角的兩條數(shù)軸, 、 分別是x軸、y軸正方向同向的單位向量,若向量 =x +y ,則把有序數(shù)對(x,y)叫做向量 在坐標系xOy中的坐標,在此坐標系下,假設 =(﹣2,2 ), =(2,0), =(5,﹣3 ),則下列命題不正確的是( )
A. =(1,0)
B.| |=2
C. ∥
D. ⊥
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com