已知函數(shù)f(x),g(x)均為可導(dǎo)函數(shù),如果f(t)=g(t+x)則f ¢(x)=( )
A.0 B.g¢(x) C.g¢(2x) D.g¢(t+x)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(1)求函數(shù)g(x)的解析式;
(2)解不等式g(x)≥f(x)-|x-1|;
(3)(文)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A.f(x)+f(xb≥g(x)+g(b) B.f(x)-f(b)≥g(x)-g(b)
C.f(x)≥g(x) D.f(a)-f(b)≥g(b)-g(a)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=,g(x)=.
(1)證明f(x)滿足f(-x)=-f(x),并求f(x)的單調(diào)區(qū)間;
(2)分別計(jì)算f(4)-5f(2)g(2)和f(9)-5f(3)g(3)的值,由此概括出涉及函數(shù)f(x)和g(x)的對所有不等于零的實(shí)數(shù)x都成立的一個(gè)等式,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)和g(x)分別由下表給出定義:
x | 1 | 2 | 3 |
f(x) | 2 | ________ | 3 |
x | 1 | 2 | 3 |
g(x) | 3 | ________ | 1 |
若方程f(g(x))=g(f(x))的解恰有2個(gè),請?jiān)诒碇袡M線上填上合適的數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三單元測試文科數(shù)學(xué)試卷 題型:填空題
已知函數(shù)f(x)=g(x)+2,x∈[-3,3],且g(x)滿足g(-x)=-g(x),若
f(x)的最大值、最小值分別為M、N,則M+N=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com