精英家教網 > 高中數學 > 題目詳情
設等差數列{an}的前n項和是Sn,且a1=10,a2=9,那么下列不等式中成立的是( 。
A、a10-a11<0B、a20-a22<0C、S20-S21<0D、S40+a41<0
分析:設出等差數列的公差為d,根據a1=10和a2=9求出a1和d,得到數列為遞減數列,排除A、B、C,由前n項和公式得到當n>21時,sn<0,所以D正確.
解答:解:設等差數列的公差為d,由a1=10,a2=a1+d=10+d=9,得到d=-1,所以an=11-n;sn=-
1
2
n(n-21);
得到此數列為減數列,所以答案A、B、C錯,由sn=-
1
2
n(n-21)知當n>21時,sn<0,所以D正確;
故選D
點評:考查學生會利用待定系數法求函數解析式,靈活運用等差數列前n項和公式解決數學問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設等差數列{an}的前n項和為Sn.若S2k=72,且ak+1=18-ak,則正整數k=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•山東)設等差數列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(1)求數列{an}的通項公式;
(2)設數列{bn}的前n項和為TnTn+
an+12n
(λ為常數).令cn=b2n(n∈N)求數列{cn}的前n項和Rn

查看答案和解析>>

科目:高中數學 來源: 題型:

設等差數列{an}的前n項之和為Sn滿足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

設等差數列{an}的前n項和為Sn,已知(a4-1)3+2012(a4-1)=1,(a2009-1)3+2012(a2009-1)=-1,則下列結論中正確的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設等差數列{an}的前n項和為Sn,若S9=81,S6=36,則S3=( 。

查看答案和解析>>

同步練習冊答案