【題目】在如圖所示的五面體中,四邊形為菱形,且, 平面, , 為中點(diǎn).
(1)求證: 平面;
(2)若平面平面,求到平面的距離.
【答案】(1)見(jiàn)解析;(2)
【解析】試題分析:
(1)取中點(diǎn),連接,由線面平行的判定定理可得平面;再由平面可得;由題意可證得四邊形為平行四邊形,故得,從而得到平面,由面面平行的判定可得平面平面,由此可得結(jié)論成立.(2)由(1)得平面,故到平面的距離等于到平面的距離.取的中點(diǎn),連接,可證得, ,從而可得平面,在此基礎(chǔ)上可得, .然后設(shè)到平面的距離為,由可得所求.
試題解析:
(1)取中點(diǎn),連接,
因?yàn)?/span>分別為中點(diǎn),所以,
又平面,且平面,所以平面,
因?yàn)?/span>平面, 平面,平面平面,
所以.
又, ,
所以, .
所以四邊形為平行四邊形.
所以.
又平面且平面,所以平面,
又,所以平面平面.
又平面,所以平面.
(2)由(1)得平面,所以到平面的距離等于到平面的距離.
取的中點(diǎn),連接,
因?yàn)樗倪呅?/span>為菱形,且, ,
所以, ,
因?yàn)槠矫?/span>平面,平面平面,
所以平面, ,
因?yàn)?/span>,所以,
所以,
設(shè)到平面的距離為,又因?yàn)?/span>,
所以由,得,
解得.
即到平面的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其圖像與軸切于非原點(diǎn)的一點(diǎn),且該函數(shù)的極小值是,那么切點(diǎn)坐標(biāo)為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列說(shuō)法:
①命題“x0∈R,x+1>3x0”的否定是“x∈R,x2+1<3x”;
②已知p,q為兩個(gè)命題,若“p∨q”為假命題,則“¬p∧¬q”為真命題
③“a>2”是“a>5”的充分不必要條件
④“若xy=0,則x=0且y=0”的逆否命題為真命題
其中正確說(shuō)法的個(gè)數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=b·ax(其中a,b為常量,且a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)A(1,6),B(3,24).
(1)求f(x);
(2)若不等式()x+()x-m≥0在x∈(-∞,1]時(shí)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列中, ,其前項(xiàng)和為,滿足.
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)記,求數(shù)列的前項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, ,且.
(Ⅰ)當(dāng)時(shí),證明:平面平面;
(Ⅱ)當(dāng)四棱錐的體積為,且二面角為鈍角時(shí),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】寫(xiě)出下列命題的否定,并判斷其真假:
(1)任何有理數(shù)都是實(shí)數(shù);
(2)存在一個(gè)實(shí)數(shù),能使成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)和二次函數(shù)滿足:,,
(1)求和的解析式;
(2)若對(duì)于,,均有成立,求a的取值范圍;
(3)設(shè),在(2)的條件下,討論方程的解的個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com