【題目】定義min{a,b}= ,若函數(shù)f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在區(qū)間[m,n]上的值域?yàn)閇 , ],則區(qū)間[m,n]長(zhǎng)度的最大值為(
A.1
B.
C.
D.

【答案】B
【解析】解:根據(jù)定義作出函數(shù)f(x)的圖象如圖:(藍(lán)色曲線),

其中A(1,1),B(3,3),

即f(x)= ,

當(dāng)f(x)= 時(shí),當(dāng)x≥3或x≤1時(shí),由3﹣|x﹣3|= ,得|x﹣3|= ,

即xC= 或xG= ,

當(dāng)f(x)= 時(shí),當(dāng)1<x<3時(shí),由x2﹣3x+3= ,得xE= ,

由圖象知若f(x)在區(qū)間[m,n]上的值域?yàn)閇 , ],則區(qū)間[m,n]長(zhǎng)度的最大值為xF﹣xC= = ,

故選:B.

【考點(diǎn)精析】本題主要考查了函數(shù)的值域的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若拋物線y2=2px上恒有關(guān)于直線x+y﹣1=0對(duì)稱的兩點(diǎn)A,B,則p的取值范圍是(
A.(﹣ ,0)
B.(0,
C.(0,
D.(﹣∞,0)∪( ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= 為偶函數(shù).
(1)求實(shí)數(shù)t值;
(2)記集合E={y|y=f(x),x∈{1,2,3}},λ=lg22+lg2lg5+lg5﹣1,判斷λ與E的關(guān)系;
(3)當(dāng)x∈[a,b](a>0,b>0)時(shí),若函數(shù)f(x)的值域?yàn)閇2﹣ ,2﹣ ],求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=4sinx(cosx﹣sinx)+3 (Ⅰ)當(dāng)x∈(0,π)時(shí),求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若f(x)在[0,θ]上的值域?yàn)閇0,2 +1],求cos2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè){an}是公比q>1的等比數(shù)列,若a2005和a2006是方程4x2﹣8x+3=0的兩個(gè)根,則a2007+a2008=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=| ﹣ax|,若對(duì)任意的正實(shí)數(shù)a,總存在x0∈[1,4],使得f(x0)≥m,則實(shí)數(shù)m的取值范圍為(
A.(﹣∞,0]
B.(﹣∞,1]
C.(﹣∞,2]
D.(﹣∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛汽車(chē)在某段路程中的行駛速率與時(shí)間的關(guān)系如圖所示.
(1)求圖中陰影部分的面積,并說(shuō)明所求面積的實(shí)際含義;
(2)假設(shè)這輛汽車(chē)在行駛該段路程前里程表的讀數(shù)是8018km,試求汽車(chē)在行駛這段路程時(shí)里程表讀數(shù)s(km)與時(shí)間t (h)的函數(shù)解析式,并作出相應(yīng)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】要得到函數(shù)y=log2(2x+1)的圖象,只需將y=1+log2x的圖象(
A.向左移動(dòng) 個(gè)單位
B.向右移動(dòng) 個(gè)單位
C.向左移動(dòng)1個(gè)單位
D.向右移動(dòng)1個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知銳角△ABC的三內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,且2csinB= b.
(1)求角C的大;
(2)若邊c=1,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案