【題目】寒冷的冬天,某高中一組學生來到一大棚蔬菜基地,研究種子發(fā)芽與溫度控制技術(shù)的關(guān)系,他們分別記錄五組平均溫度及種子的發(fā)芽數(shù),得到如下數(shù)據(jù):
平均溫度() | 11 | 10 | 13 | 9 | 12 |
發(fā)芽數(shù)(顆) | 25 | 23 | 30 | 16 | 26 |
(Ⅰ)若從五組數(shù)據(jù)中選取兩組數(shù)據(jù),求這兩組數(shù)據(jù)平均溫度相差不超過概率;
(Ⅱ)求關(guān)于的線性回歸方程;
(Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與實際數(shù)據(jù)的誤差不超過2顆,則認為得到的線性回歸方程是可靠的,試問(Ⅱ)屮所得的線性回歸方程是否可靠?
(注: , )
【答案】(Ⅰ);(Ⅱ);(Ⅲ)見解析.
【解析】試題分析:(Ⅰ)利用列舉法可得五組數(shù)據(jù)中選取兩組數(shù)據(jù)總事件數(shù)為 ,兩組數(shù)據(jù)平均溫度相差不超過的事件數(shù)為,由古典概型概率公式可得結(jié)果;(Ⅱ)根據(jù)表格中的數(shù)據(jù)及平均數(shù)公式可求出與的值可得樣本中心點的坐標,從而求可得公式中所需數(shù)據(jù),求出的值,再結(jié)合樣本中心點的性質(zhì)可得的值,進而可得關(guān)于的回歸方程;(Ⅲ)將表格中所給的值代入回歸方程求出的值與表格中對應(yīng)值比較即可的結(jié)果.
試題解析:(Ⅰ)設(shè),則基本事件為, , , , , , , , , ,所以
(Ⅱ),
關(guān)于的線性回歸方程
(Ⅲ)利用回歸方程得到五組估計數(shù)據(jù)如圖
平均溫度 | 11 | 10 | 13 | 9 | 12 |
發(fā)芽數(shù)(顆) | 25 | 23 | 30 | 16 | 26 |
估計發(fā)芽數(shù) | 24 | 21 | 30 | 18 | 27 |
所以線性回歸方程是可靠的.
(注只要驗證一兩個數(shù)據(jù)且結(jié)論正確可給兩分)
【方法點晴】本題主要考查古典概型概率公式以及線性回歸方程的求法與應(yīng)用,屬于中檔題.求回歸直線方程的步驟:①依據(jù)樣本數(shù)據(jù)畫出散點圖,確定兩個變量具有線性相關(guān)關(guān)系;②計算的值;③計算回歸系數(shù);④寫出回歸直線方程為; 回歸直線過樣本點中心是一條重要性質(zhì),利用線性回歸方程可以估計總體,幫助我們分析兩個變量的變化趨勢.
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為了對研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
單價元 | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
銷量件 | 100 | 94 | 93 | 90 | 85 | 78 |
預計在今后的銷售中,銷量與單價仍然服從這種線性相關(guān)關(guān)系,且該產(chǎn)品的成本是5元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為( )
(附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率的最小二乘估計值為.參考數(shù)值:,)
A. 9.4元 B. 9.5元 C. 9.6元 D. 9.7元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)且x,.
(1)判斷的奇偶性,并用定義證明;
(2)若不等式在上恒成立,試求實數(shù)a的取值范圍;
(3)的值域為函數(shù)在上的最大值為M,最小值為m,若成立,求正數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2016·北京卷)如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.
(1)求證:PD⊥平面PAB;
(2)求直線PB與平面PCD所成角的正弦值;
(3)在棱PA上是否存在點M,使得BM∥平面PCD?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓經(jīng)過點,且和直線相切.
(Ⅰ)求該動圓圓心的軌跡的方程;
(Ⅱ)已知點,若斜率為1的直線與線段相交(不經(jīng)過坐標原點和點),且與曲線交于兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在定義域內(nèi)有兩個不同的極值點.
()求的取值范圍.
()記兩個極值點, ,且,已知,若不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓的左焦點的直線與橢圓交于兩點,直線過坐標原點且與直線的斜率互為相反數(shù).若直線與橢圓交于兩點且均不與點重合,設(shè)直線與軸所成的銳角為,直線與軸所成的銳角為,判斷與的大小關(guān)系并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com