解:(1)當(dāng)n>1時,b
n=B
n-B
n-1=
-
=3n-2
令n=1得b1=1,
∴bn=3n-2.(5分)
(2)由an=(1+
)a
n-1,得
∴an=
由a
1=2,bn=3n-2知,
an=(1+
)(1+
)(1+
)2
=(1+1)(1+
)(1+
)
又
=
=
,(5分)
設(shè)c
n=
,
當(dāng)n=1時,有(1+1)=
>
當(dāng)n=2時,有an=(1+1)(1+
)=
=
>
=
=c
n假設(shè)n=k(k≥1)時an>c
n成立,
即(1+1)(1+
)(1+
)>
成立,
則n=k+1時,
左邊═(1+1)(1+
)(1+
)(1+
)
>
(1+
)=
(3分)
右邊=c
k+1=
=
由(ak+1)
3-(c
k+1)
3=(3k+1)
-(3k+4)
=
=
>0,得ak+1>c
k+1成立.
綜合上述,an>c
n對任何正整數(shù)n都成立.(3分)
分析:(1)由b
n=B
n-B
n-1=
-
=3n-2,能得到數(shù)列{b
n}的通項公式.
(2)由an=(1+
)a
n-1,得
,an=
,由a
1=2,bn=3n-2知,an=(1+
)(1+
)(1+
)2=(1+1)(1+
)(1+
),由此入手,利用數(shù)學(xué)歸納法能夠證明an>
.
點評:本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要注意數(shù)列遞推公式的合理運用,合理地運用數(shù)學(xué)歸納法進(jìn)行證明.