【題目】已知函數(shù)f(x)=x2﹣2|x|﹣3a
(1)當(dāng)a=1時,在所給坐標(biāo)系中,畫出函數(shù)f(x)的圖象,并求f(x)的單調(diào)遞增區(qū)間
(2)若直線y=1與函數(shù)f(x)的圖象有4個交點,求a的取值范圍.

【答案】
(1)解:a=1時:f(x)=x2﹣2|x|﹣3,

∴f(x)=

畫出函數(shù)的圖象,如圖示:

∴f(x)的遞增區(qū)間是[﹣1,0]和[1,+∞)


(2)解:由 得:﹣3a﹣1<1<﹣3a,

解得:﹣ <a<﹣


【解析】(1)將a=1的值代入f(x)的表達式,畫出函數(shù)的圖象,讀出單調(diào)區(qū)間即可;(2)問題掌握解關(guān)于a的不等式組,解出即可.
【考點精析】利用二次函數(shù)的性質(zhì)對題目進行判斷即可得到答案,需要熟知當(dāng)時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時,拋物線開口向下,函數(shù)在上遞增,在上遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】偶函數(shù)f(x)滿足f(1﹣x)=f(1+x),且在x∈[0,1]時,f(x)= ,若直線kx﹣y+k=0(k>0)與函數(shù)f(x)的圖象有且僅有三個交點,則k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】累計凈化量(CCM)是空氣凈化器質(zhì)量的一個重要衡量指標(biāo),它是指空氣凈化器從開始使用到凈化效率為時對顆粒物的累計凈化量(單位:克).根據(jù)國家標(biāo)準(zhǔn),對空氣凈化器的累計凈化量(CCM)有如下等級劃分:

凈化量(克)

12以上

等級

已知某批空氣凈化器共臺,其累計凈化量都分布在區(qū)間內(nèi),為了解其質(zhì)量,隨機抽取了臺凈化器作為樣本進行估計,按照,,均勻分組,其中累凈化量在的所有數(shù)據(jù)有:,,,并繪制了如下頻率分布直方圖

1)求的值及頻率分布直方圖中的值;

2)以樣本估計總體,試估計這批空氣凈化器(共2000臺)中等級為的空氣凈化器有多少臺?

3)從累計凈化量在的樣本中隨機抽取2臺,求恰好有1臺等級為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求函數(shù)y=( x﹣( x+1,x∈[﹣3,2]的單調(diào)區(qū)間,并求它的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x3﹣2ax2+3x(x∈R).
(1)若a=1,點P為曲線y=f(x)上的一個動點,求以點P為切點的切線斜率取最小值時的切線方程;
(2)若函數(shù)y=f(x)在(0,+∞)上為單調(diào)增函數(shù),試求滿足條件的最大整數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=x2﹣2ax+3為定義在[﹣2,2]上的函數(shù).
(1)當(dāng)a=1時,求f(x)的最大值與最小值;
(2)若f(x)的最大值為M,最小值為m,函數(shù)g(a)=M﹣m,求g(a)的解析式,并求其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)當(dāng)a=2時,求f(x)在x∈[0,1]的最大值;
(2)當(dāng)0<a<1,f(x)在x∈[0,1]上的最大值和最小值之和為a,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知多面體中,四邊形為平行四邊形, ,且 , , .

(1)求證:平面平面

(2)若,直線與平面夾角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)的圖象和直線無交點,現(xiàn)有下列結(jié)論:

①方程一定沒有實數(shù)根;②若,則不等式對一切實數(shù)都成立;

③若,則必存在實數(shù),使;④若,則不等式對一切實數(shù)都成立;⑤函數(shù)的圖象與直線也一定沒有交點,其中正確的結(jié)論是__________.(寫出所有正確結(jié)論的編號)

查看答案和解析>>

同步練習(xí)冊答案