【題目】已知函數(shù).
(1)若,求函數(shù)的極值和單調(diào)區(qū)間;
(2)若在區(qū)間上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
【答案】(1)取得極小值為,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;
(2).
【解析】
(1)求函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)等于零,解方程,再求出函數(shù)的導(dǎo)數(shù)和駐點(diǎn),然后列表討論,求函數(shù)的單調(diào)區(qū)間和極值;
(2)若在區(qū)間上存在一點(diǎn),使得成立,其充要條件是在區(qū)間上的最小值小于即可.利用導(dǎo)數(shù)研究函數(shù)在區(qū)間上的最小值,先求出導(dǎo)函數(shù),然后討論研究函數(shù)在上的單調(diào)性,將的極值點(diǎn)與區(qū)間的端點(diǎn)比較,確定其最小的極值點(diǎn).
解:的定義域?yàn)?/span>,
因?yàn)?/span>,
(1)當(dāng)時(shí),,令,得,
又的定義域?yàn)?/span>,
,隨的變化情況如下表:
1 | |||
0 | |||
單調(diào)遞減 | 極小值 | 單調(diào)遞增 |
所以時(shí),取得極小值為.
的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(2)因?yàn)?/span>,且.
令,得,
若在區(qū)間上存在一點(diǎn),使得成立,
其充要條件是在區(qū)間上的最小值小于0即可.
當(dāng),即時(shí),對(duì)成立,
所以,在區(qū)間上單調(diào)遞減,
故在區(qū)間上的最小值為,
由,得,即.
當(dāng),即時(shí),
若,則對(duì)成立,
所以在區(qū)間上單調(diào)遞減,
所以,在區(qū)間上的最小值為
,
顯然,在區(qū)間上的最小值小于不成立.
若,即時(shí),則有
單調(diào)遞減 | 極小值 | 單調(diào)遞增 |
所以在區(qū)間上的最小值為.
由,
得,解得,即.
綜上,由可知符合題意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于命題的說法錯(cuò)誤的是( )
A. 命題“若,則”的逆否命題為“若,則”
B. “”是“函數(shù)在區(qū)間上為增函數(shù)”的充分不必要條件
C. 命題“,使得”的否定是“,均有”
D. “若為的極值點(diǎn),則”的逆命題為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)某種書籍每?jī)?cè)的成本費(fèi)(元)與印刷冊(cè)數(shù)(千冊(cè))的數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
4.83 | 4.22 | 0.3775 | 60.17 | 0.60 | -39.38 | 4.8 |
其中,.
為了預(yù)測(cè)印刷千冊(cè)時(shí)每?jī)?cè)的成本費(fèi),建立了兩個(gè)回歸模型:,.
(1)根據(jù)散點(diǎn)圖,你認(rèn)為選擇哪個(gè)模型預(yù)測(cè)更可靠?(只選出模型即可)
(2)根據(jù)所給數(shù)據(jù)和(1)中的模型選擇,求關(guān)于的回歸方程,并預(yù)測(cè)印刷千冊(cè)時(shí)每?jī)?cè)的成本費(fèi).
附:對(duì)于一組數(shù)據(jù),,…,,其回歸方程的斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】盒子里裝有4張卡片,上面分別寫著數(shù)字1,1,2,2,每張卡片被取到的概率相等.先從盒子中任取1張卡片,記下上面的數(shù)字,然后放回盒子內(nèi)攪勻,再?gòu)暮凶又须S機(jī)任取1張卡片,記下它上面的數(shù)字.
(1)求的概率;
(2)設(shè)“函數(shù)在區(qū)間內(nèi)有且只有一個(gè)零點(diǎn)”為事件,求的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面一道題目的證明,指出其中的一處錯(cuò)誤。題目:平面上有六個(gè)點(diǎn),任何三點(diǎn)都是三邊互不相等三角形的頂點(diǎn),則這些三角形中有一個(gè)的最短邊又是另一個(gè)三角形的最長(zhǎng)邊。證明:第一步,對(duì)已知的六個(gè)點(diǎn)作兩兩連線,可以得出15條邊,記為,,…,.第二步,由于任何三點(diǎn)組成的都是“三邊互不相等的三角形”,因此,15條邊互不相等不妨設(shè).第三步,由于“任何三點(diǎn)都是三邊互不相等三角形的頂點(diǎn)”,因此,任取三條邊都可以組成三角形,則、、組成的三角形的最長(zhǎng)邊,也是、、組成的三角形的最短邊,命題得證.這三步中,第______步有錯(cuò)誤,理由是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,傾斜角為的直線經(jīng)過拋物線的焦點(diǎn),且與拋物線交于兩點(diǎn).
(1)求拋物線的焦點(diǎn)的坐標(biāo)及準(zhǔn)線的方程;
(2)若為銳角,作線段的垂直平分線交軸于點(diǎn).證明為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓,直線.
(1)證明:不論取什么數(shù),直線與圓恒交于兩點(diǎn);
(2)求直線被圓截得的線段的最短長(zhǎng)度,并求此時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知雙曲線.
(1)過曲線的左頂點(diǎn)作的兩條漸近線的平行線,求這兩組平行線圍成的平行四邊形的面積;
(2)設(shè)斜率為的直線交曲線于、兩點(diǎn),若與圓相切,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com