已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,an=2數(shù)學(xué)公式-1(n∈N*).
(1)求an的通項(xiàng)公式;
(2)設(shè)Tn=數(shù)學(xué)公式+數(shù)學(xué)公式+…+數(shù)學(xué)公式,Pn=數(shù)學(xué)公式+數(shù)學(xué)公式+…+數(shù)學(xué)公式,求2Tn-Pn,并確定最小的正整數(shù)n,使2Tn-Pn數(shù)學(xué)公式

解:(1)當(dāng)n=1時(shí)
又由已知


化簡(jiǎn)得an+12-an2-2an+1-2an=0?(an+1+an)(an+1-an-2)=0
∵an>0∴an+1-an=2
∴an=1+(n-1)×2=2n-1(n∈N*
(2)∵


=
隨n的增大A=2Tn-Pn的值也增大n=4時(shí)
n=5時(shí),故所求n=5
分析:(1)先看當(dāng)n=1時(shí),求得a1,進(jìn)而根據(jù)數(shù)列的遞推式,利用an+1=Sn+1-Sn求得(an+1+an)(an+1-an-2)=0進(jìn)而求得an+1-an=2
進(jìn)而根據(jù)等差數(shù)列的性質(zhì)求得數(shù)列的通項(xiàng)公式.
(2)根據(jù)(1)中的an可數(shù)列的前n項(xiàng)的和Sn,進(jìn)而根據(jù)等比數(shù)列的求和公式求得Tn,利用裂項(xiàng)法求得Pn,則2Tn-Pn可求.根據(jù)2Tn-Pn的表達(dá)式可知,隨n的增大,其結(jié)果也增大,進(jìn)而可判斷出n從5開(kāi)始2Tn-Pn
點(diǎn)評(píng):本題主要考查了數(shù)列的應(yīng)用,考查了考生綜合分析問(wèn)題和解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較數(shù)學(xué)公式數(shù)學(xué)公式的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:青島二模 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測(cè)試卷(陳經(jīng)綸中學(xué))(解析版) 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年高考復(fù)習(xí)方案配套課標(biāo)版月考數(shù)學(xué)試卷(二)(解析版) 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案