已知函數(shù),其中是自然對數(shù)的底數(shù),.
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若,求的單調(diào)區(qū)間;
(3)若,函數(shù)的圖象與函數(shù)的圖象有3個不同的交點(diǎn),求實(shí)數(shù)的取值范圍.
(1);(2)當(dāng)時,的單調(diào)遞減區(qū)間為,,單調(diào)遞增區(qū)間為;當(dāng)時,的單調(diào)遞減區(qū)間為;當(dāng)時,的單調(diào)遞減區(qū)間為,,單調(diào)遞增區(qū)間為;(3).
【解析】
試題分析:(1) 利用導(dǎo)數(shù)的幾何意義求切線的斜率,再求切點(diǎn)坐標(biāo),最后根據(jù)點(diǎn)斜式直線方程求切線方程;(2)利用導(dǎo)數(shù)的正負(fù)分析原函數(shù)的單調(diào)性,注意在解不等式時需要對參數(shù)的范圍進(jìn)行討論;(3)根據(jù)單調(diào)性求函數(shù)的極值,根據(jù)其圖像交點(diǎn)的個數(shù)確定兩個函數(shù)極值的大小關(guān)系,然后解對應(yīng)的不等式.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013122310002125754906/SYS201312231007091428291818_DA.files/image014.png">,
所以,
所以曲線在點(diǎn)處的切線斜率為.
又因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013122310002125754906/SYS201312231007091428291818_DA.files/image019.png">,
所以所求切線方程為,即. 2分
(2),
①若,當(dāng)或時,;當(dāng)時,.
所以的單調(diào)遞減區(qū)間為,;
單調(diào)遞增區(qū)間為. 4分
②若,,
所以的單調(diào)遞減區(qū)間為. 5分
③若,當(dāng)或時,;當(dāng)時,.
所以的單調(diào)遞減區(qū)間為,;
單調(diào)遞增區(qū)間為. 7分
(3)由(2)知函數(shù)在上單調(diào)遞減,在單調(diào)遞增,在上單調(diào)遞減,
所以在處取得極小值,在處取得極大值. 8分
由,得.
當(dāng)或時,;當(dāng)時,.
所以在上單調(diào)遞增,在單調(diào)遞減,在上單調(diào)遞增.
故在處取得極大值,在處取得極小值. 10分
因?yàn)楹瘮?shù)與函數(shù)的圖象有3個不同的交點(diǎn),
所以,即. 所以. 12分
考點(diǎn):1.導(dǎo)數(shù)的幾何意義;2.切線方程;3.利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性4.分類討論;5.極值6.零點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)已知函數(shù)(其中是自然對數(shù)的底數(shù),為正數(shù))
(I)若在處取得極值,且是的一個零點(diǎn),求的值;(II)若,求在區(qū)間上的最大值;(III)設(shè)函數(shù)在區(qū)間上是減函數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東華附、省高三上學(xué)期期末聯(lián)考理數(shù)學(xué)卷(解析版) 題型:解答題
已知函數(shù),其中是自然對數(shù)的底數(shù).
(1)求函數(shù)的零點(diǎn);
(2)若對任意均有兩個極值點(diǎn),一個在區(qū)間內(nèi),另一個在區(qū)間外,
求的取值范圍;
(3)已知且函數(shù)在上是單調(diào)函數(shù),探究函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年北京市西城區(qū)高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),其中是自然對數(shù)的底數(shù),.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆河北省石家莊市高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
已知函數(shù),其中是自然對數(shù)的底數(shù),.
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若,求的單調(diào)區(qū)間;
(3)若,函數(shù)的圖象與函數(shù)的圖象有3個不同的交點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com