【題目】直線(xiàn)過(guò)點(diǎn)P且與x軸、y軸的正半軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),是否存在這樣的直線(xiàn)滿(mǎn)足下列條件:①△AOB的周長(zhǎng)為12;②△AOB的面積為6.若存在,求出方程;若不存在,請(qǐng)說(shuō)明理由.

【答案】1.

【解析】試題分析:設(shè)直線(xiàn)的方程,若滿(mǎn)足(1)可得,聯(lián)立可解,即可得方程;

(2)若滿(mǎn)足,可得,同樣可得方程,它們公共的方程即為所求.

試題解析:

設(shè)直線(xiàn)方程為=1(a>0,b>0),

若滿(mǎn)足條件(1),則a+b+=12,①

直線(xiàn)過(guò)點(diǎn)P(,2),∵=1.②

①②可得5a2-32a+48=0,

解得,或.

所求直線(xiàn)的方程為=1=1,

3x+4y-12=015x+8y-36=0.

若滿(mǎn)足條件(2),則ab=12,③

由題意得,=1,④

③④整理得a2-6a+8=0,

解得,或.

所求直線(xiàn)的方程為=1=1,

3x+4y-12=03x+y-6=0.

綜上所述:存在同時(shí)滿(mǎn)足(1)(2)兩個(gè)條件的直線(xiàn)方程,為3x+4y-12=0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)x∈[﹣2,1]時(shí),不等式ax3﹣x2+4x+3≥0恒成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), ,( ).

(1)討論函數(shù)上零點(diǎn)的個(gè)數(shù);

(2)若有兩個(gè)不同的零點(diǎn), ,求證: .

(參考數(shù)據(jù): ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓x2+y2=4上一定點(diǎn)A(2,0),B(1,1)為圓內(nèi)一點(diǎn),P,Q為圓上的動(dòng)點(diǎn).

(1)求線(xiàn)段AP中點(diǎn)的軌跡方程;
(2)若∠PBQ=90°,求線(xiàn)段PQ中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+)(ω>0,0≤≤π)為偶函數(shù),其圖象上相鄰的兩個(gè)最高點(diǎn)之間的距離為2π. (Ⅰ)求f(x)的解析式;
(Ⅱ)若 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方體ABCD﹣A′B′C′D′的棱長(zhǎng)為1,E、F分別是棱AA′,CC′的中點(diǎn),過(guò)直線(xiàn)EF的平面分別與棱BB′、DD′交于M、N,設(shè)BM=x,x∈[0,1],給出以下四個(gè)命題:
①平面MENF⊥平面BDD′B′;
②當(dāng)且僅當(dāng)x= 時(shí),四邊形MENF的面積最。
③四邊形MENF周長(zhǎng)l=f(x),x∈0,1]是單調(diào)函數(shù);
④四棱錐C′﹣MENF的體積v=h(x)為常函數(shù);
以上命題中真命題的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0,a≠1,設(shè)p:函數(shù)y=loga(x+1)在(0,+∞)上單調(diào)遞減;q:曲線(xiàn)y=x2+(2a﹣3)x+1與x軸交于不同的兩點(diǎn).如果p且q為假命題,p或q為真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知單調(diào)遞增的等差數(shù)列{an},滿(mǎn)足|a10a11|>a10a11 , 且a102<a112 , Sn為其前n項(xiàng)和,則(
A.a8+a12>0
B.S1 , S2 , …S19都小于零,S10為Sn的最小值
C.a8+a13<0
D.S1 , S2 , …S20都小于零,S10為Sn的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx+c在點(diǎn)x=2處取得極值c﹣16.
(1)求a,b的值;
(2)若f(x)有極大值28,求f(x)在[﹣3,3]上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案