已知數(shù)列中,,
(Ⅰ)記,求證:數(shù)列為等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和
(1)根據(jù)題意,由于,因此可知,結(jié)合定義來得到證明。
(2)
解析試題分析:解:(Ⅰ)由,可知.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/94/d/1ubdc4.png" style="vertical-align:middle;" />,所以, 4分
又,
所以數(shù)列是以3為首項(xiàng),以3為公比的等比數(shù)列. 6分
(Ⅱ)由(Ⅰ)知,所以.
所以 9分
其中
記 ①
②
兩式相減得 13分
所以 14分
考點(diǎn):錯位相減法,等比數(shù)列
點(diǎn)評:主要是考查了等比數(shù)列和錯位相減法求和 運(yùn)用,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
大學(xué)生自主創(chuàng)業(yè)已成為當(dāng)代潮流.某大學(xué)大三學(xué)生夏某今年一月初向銀行貸款兩萬元作開店資金,全部用作批發(fā)某種商品.銀行貸款的年利率為6%,約定一年后一次還清貸款.已知夏某每月月底獲得的利潤是該月月初投人資金的15%,每月月底需要交納個人所得稅為該月所獲利潤的20%,當(dāng)月房租等其他開支1500元,余款作為資金全部投入批發(fā)該商品再經(jīng)營,如此繼續(xù),假定每月月底該商品能全部賣出.
(1)設(shè)夏某第n個月月底余元,第n+l個月月底余元,寫出a1的值并建立與的遞推關(guān)系;
(2)預(yù)計年底夏某還清銀行貸款后的純收入.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列{an}是公比為的等比數(shù)列,且1-a2是a1與1+a3的等比中項(xiàng),前n項(xiàng)和為Sn;數(shù)列{bn}是等差數(shù)列,b1=8,其前n項(xiàng)和Tn滿足Tn=n·bn+1(為常數(shù),且≠1).
(I)求數(shù)列{an}的通項(xiàng)公式及的值;
(Ⅱ)比較+++ +與Sn的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列的所有項(xiàng)均為正數(shù),首項(xiàng)=1,且成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)數(shù)列{}的前項(xiàng)和為,若=,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,
(Ⅰ)求數(shù)列的通項(xiàng);
(Ⅱ)求數(shù)列的前項(xiàng)和;
(Ⅲ)若存在,使得成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定數(shù)列.對,該數(shù)列前項(xiàng)的最大值記為,后項(xiàng)的最小值記為,.
(Ⅰ)設(shè)數(shù)列為,,,,寫出,,的值;
(Ⅱ)設(shè)是公比大于的等比數(shù)列,且.證明:是等比數(shù)列.
(Ⅲ)設(shè)是公差大于的等差數(shù)列,且,證明:是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
記數(shù)列的前n項(xiàng)和,且,且成公比不等于1的等比數(shù)列。
(1)求c的值;
(2)設(shè),求數(shù)列{}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,已知a2 = 2,a5 = 16,求:
(1)a1與公比q的值;(2)數(shù)列前6項(xiàng)的和S6 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com