【題目】定義在 上的函數(shù) 滿足 ,若 ,則 ( )
A.
B.
C.
D.

【答案】C
【解析】 定義在 上的函數(shù) 滿足 ,

, 函數(shù) 是以 為周期的函數(shù),當(dāng) 時(shí), , 時(shí), ,

,當(dāng) 時(shí), , , 當(dāng) 時(shí),
故答案為:C.

由已知結(jié)合周期的定義可得到f ( 2 + x ) = f ( x ) 即函數(shù) f ( x ) 是以 2 為周期的函數(shù),利用周期的性質(zhì)把 x ∈ [ 2 , 1 ] 轉(zhuǎn)化為 x + 4 ∈ [ 2 , 3 ] ,故把 x + 4 這個(gè)整體代入到f(x) 的解析式再由已知題意得到f(x) 的函數(shù)式,同理再討論當(dāng) x ∈ [ 1 , 0 ] 時(shí)的情況綜合以上兩種情況可得出f(x) 的解析式。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=alnx+ x2﹣(1+a)x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≥0對(duì)定義域中的任意x恒成立,求實(shí)數(shù)a的取值范圍;
(3)證明:對(duì)任意正整數(shù)m,n,不等式 + +…+ 恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1、F2為雙曲線的焦點(diǎn),過(guò)F2垂直于實(shí)軸的直線交雙曲線于A、B兩點(diǎn),BF1交y軸于點(diǎn)C,若AC⊥BF1 , 則雙曲線的離心率為(
A.
B.
C.2
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱ABC﹣A1B1C1的底面為直角三角形,兩直角邊AB和AC的長(zhǎng)分別為4和2,側(cè)棱AA1的長(zhǎng)為5.
(1)求三棱柱ABC﹣A1B1C1的體積;
(2)設(shè)M是BC中點(diǎn),求直線A1M與平面ABC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的四棱錐 中,四邊形ABCD為正方形, 平面PAB,且 分別為 的中點(diǎn), .

證明:
(1) ;
(2)若 ,求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于莖葉圖的說(shuō)法,結(jié)論錯(cuò)誤的一個(gè)是( )

A. 甲的極差是29 B. 甲的中位數(shù)是25

C. 乙的眾數(shù)是21 D. 甲的平均數(shù)比乙的大

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) .
(1)求函數(shù) 上的單調(diào)遞增區(qū)間;
(2)設(shè) 的三個(gè)角 所對(duì)的邊分別為 ,且 , 成公差大于零的等差數(shù)列,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】五一期間,某商場(chǎng)決定從2種服裝、3種家電、4種日用品中,選出3種商品進(jìn)行促銷活動(dòng).
(1)試求選出3種商品中至少有一種是家電的概率;
(2)商場(chǎng)對(duì)選出的某商品采用抽獎(jiǎng)方式進(jìn)行促銷,即在該商品現(xiàn)價(jià)的基礎(chǔ)上將價(jià)格提高60元,規(guī)定購(gòu)買(mǎi)該商品的顧客有3次抽獎(jiǎng)的機(jī)會(huì):若中一次獎(jiǎng),則獲得數(shù)額為n元的獎(jiǎng)金;若中兩次獎(jiǎng),則獲得數(shù)額為3n元的獎(jiǎng)金;若中三次獎(jiǎng),則共獲得數(shù)額為 6n元的獎(jiǎng)金.假設(shè)顧客每次抽獎(jiǎng)中獎(jiǎng)的概率都是 ,請(qǐng)問(wèn):商場(chǎng)將獎(jiǎng)金數(shù)額n最高定為多少元,才能使促銷方案對(duì)商場(chǎng)有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= x3﹣ax,在x= 處取得極小值,記g(x)= ,程序框圖如圖所示,若輸出的結(jié)果S> ,則判斷框中可以填入的關(guān)于n的判斷條件是(
A.n≤12?
B.n>12?
C.n≤13?
D.n>13?

查看答案和解析>>

同步練習(xí)冊(cè)答案