分析:(1)先根據(jù)方程的根求出
y1==5,再根據(jù)y
n的表達(dá)式和x
n+2關(guān)于x
n+1表達(dá)式,分別取n=1、2、3即可求出;
(2)根據(jù)x
n、y
n各項(xiàng)為正的特征,求出z
1=y
1y
2=26,再根據(jù)z
n的表達(dá)式及不等式的性質(zhì)可得z
n>26(n≥2),最后代入
n |
|
i=1 |
zi,命題得證;
(3)求出
|y2-y1|=<,再通過(guò)y
n+1關(guān)于y
n的表達(dá)式,證出
|yn+1-yn|≤|yn-yn-1|,利用數(shù)列的遞推特性進(jìn)一步證出|y
n+1-y
n|≤
•,最后用絕對(duì)值不等式的性質(zhì)將|y
2n-y
n|分解為不小于它本身的和:|y
n+1-y
n|+…+|y
2n-1-y
2n-2|+|y
2n-y
2n-1|的形式,得出等比數(shù)列求和表達(dá)式,再將所得結(jié)果適當(dāng)放大,使命題得證.
解答:解:(1)解方程x
2-6x+5=0 得x
1=1,x
2=5,---------------------------------------------1分
∴
y1==5,------------------------------------------------------------------------------2分
x3=(5+)x2=26,
∴
y2==,--------------------------------------------------------------------------3分
x4=(5+)x3=135,
∴
y3==--------------------------------------------4分
(2)由
xn+2=(5+)xn+1 得
=5+ 即
yn+1=5+?y
n+1y
n=5y
n+1----------------------6分
當(dāng)n≥2 時(shí)y
n>5,于是z
1=y
1y
2=26,z
n=y
ny
n+1=5y
n+1>26 (n≥2 )
∴
n |
|
i=1 |
zi=z1+z2+…+zn≥26n--------------------------------------------------------------------9分
(3)當(dāng)n≥2 時(shí),有
|yn+1-yn|=|5+-(5+)|=||≤|yn-yn-1| ≤|yn-1-yn-2| ≤…≤|y2-y1|=
•----------------------------------------12分
∵|y
2n-y
n|=|y
2n-y
2n-1+y
2n-1-y
2n-2+y
2n-2-…+y
n+1-y
n|
∴|y
2n-y
n|≤|y
n+1-y
n|+…+|y
2n-1-y
2n-2|+|y
2n-y
2n-1|
≤[+…++]=
•<•=•∴對(duì)?n∈N
* 有
|y2n-yn|<• (n∈N
*)----------------------------------------------14分