【題目】為了鼓勵(lì)職員工作熱情,某公司對每位職員一年來的工作業(yè)績按月進(jìn)行考評打分;年終按照職員的月平均值評選公司最佳職員并給予相應(yīng)獎(jiǎng)勵(lì).已知職員一年來的工作業(yè)績分?jǐn)?shù)的莖葉圖如圖所示:

1)根據(jù)職員的業(yè)績莖葉圖求出他這一年的工作業(yè)績的中位數(shù)和平均數(shù);

2)若記職員的工作業(yè)績的月平均數(shù)為.

①已知該公司還有6位職員的業(yè)績在100以上,分別是,,,,在這6人的業(yè)績里隨機(jī)抽取2個(gè)數(shù)據(jù),求恰有1個(gè)數(shù)據(jù)滿足(其中)的概率;

②由于職員的業(yè)績高,被公司評為年度最佳職員,在公司年會(huì)上通過抽獎(jiǎng)形式領(lǐng)取獎(jiǎng)金.公司準(zhǔn)備了9張卡片,其中有1張卡片上標(biāo)注獎(jiǎng)金為6千元,4張卡片的獎(jiǎng)金為4千元,另外4張的獎(jiǎng)金為2千元.規(guī)則是:獲獎(jiǎng)職員需要從9張卡片中隨機(jī)抽出3張,這3張卡片上的金額數(shù)之和就是該職員所得獎(jiǎng)金.記職員獲得的獎(jiǎng)金為(千元),求的分布列和期望.

【答案】(1)中位數(shù)是;平均數(shù)是(2)①②詳見解析

【解析】

(1)直接利用中位數(shù)和平均數(shù)的概念公式來計(jì)算即可;

(2)①找出符合條件的數(shù)據(jù),利用古典概型公式求出概率即可.

②由題意知所有取值為:6,8,1012,14,利用古典概型公式求出概率,進(jìn)而可得分布列和期望.

解:(1)由莖葉圖可知,所求的中位數(shù)是;

平均數(shù)是;

2)①由(1)知,①滿足的有,,

所以,所求的概率;

②由題意知所有取值為:6,810,1214

;

;

;

;

.

所以的分布列為

6

8

10

12

14

所以,期望(千元).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)、為實(shí)常數(shù)).

1)當(dāng)時(shí),證明:不是奇函數(shù);

2)設(shè)是奇函數(shù),求的值;

3)當(dāng)是奇函數(shù)時(shí),研究是否存在這樣的實(shí)數(shù)集的子集,對任何屬于、,都有成立?若存在試找出所有這樣的;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱的底面是等腰直角三角形,,側(cè)棱底面,且,的中點(diǎn)

(1)求直三棱柱的全面積;

(2)求異面直線所成角的大。ńY(jié)果用反三角函數(shù)表示);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合、均為實(shí)數(shù)集的子集,記:;

1)已知,,試用列舉法表示;

2)設(shè),當(dāng),且時(shí),曲線的焦距為,如果,設(shè)中的所有元素之和為,對于滿足,且的任意正整數(shù)、,不等式恒成立,求實(shí)數(shù)的最大值;

3)若整數(shù)集合,則稱自生集,若任意一個(gè)正整數(shù)均為整數(shù)集合的某個(gè)非空有限子集中所有元素的和,則稱的基底集,問:是否存在一個(gè)整數(shù)集合既是自生集又是的基底集?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,BC的對邊分別為a,bc,且2acosB2cb

1)求∠A的大;

2)若△ABC的外接圓的半徑為,面積為,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在底面為正方形的四棱錐中,平面平面分別為棱的中點(diǎn).

(1)求證:平面;

(2)若直線所成角的正切值為,求平面與平面所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x22xsinα+1的頂點(diǎn)在橢圓x2+my2=1上,這樣的拋物線有且只有兩條,則m的取值范圍是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),過坐標(biāo)原點(diǎn)作兩條互相垂直的射線與橢圓分別交于兩點(diǎn).

1)證明:當(dāng)取得最小值時(shí),橢圓的離心率為.

2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列的公比,且,、的等差中項(xiàng).

1)求數(shù)列的通項(xiàng)公式;

2)試比較的大小,并說明理由;

3)若數(shù)列滿足,在每兩個(gè)之間都插入個(gè)2,使得數(shù)列變成了一個(gè)新的數(shù)列,試問:是否存在正整數(shù),使得數(shù)列的前項(xiàng)和?如果存在,求出的值;如果不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案