精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(1,c)處有公共切線,求a,b的值;
(2)當a=3,b=﹣9時,函數f(x)+g(x)在區(qū)間[k,2]上的最大值為28,求k的取值范圍.

【答案】
(1)解:f(x)=ax2+1(a>0),則f′(x)=2ax,k1=2a,

g(x)=x3+bx,則g′(x)=3x2+b,k2=3+b,

由(1,c)為公共切點,可得:2a=3+b

又f(1)=a+1,g(1)=1+b,

∴a+1=1+b,

即a=b,代入①式,可得:a=3,b=3.


(2)解:當a=3,b=﹣9時,設h(x)=f(x)+g(x)=x3+3x2﹣9x+1

則h′(x)=3x2+6x﹣9,

令h'(x)=0,

解得:x1=﹣3,x2=1;

∴k≤﹣3時,函數h(x)在(﹣∞,﹣3)上單調增,在(﹣3,1]上單調減,(1,2)上單調增,所以在區(qū)間[k,2]上的最大值為h(﹣3)=28

﹣3<k<2時,函數h(x)在區(qū)間[k,2]上的最大值小于28

所以k的取值范圍是(﹣∞,﹣3]


【解析】(1)根據曲線y=f(x)與曲線y=g(x)在它們的交點(1,c)處具有公共切線,可知切點處的函數值相等,切點處的斜率相等,故可求a、b的值;(2)當a=3,b=﹣9時,設h(x)=f(x)+g(x)=x3+3x2﹣9x+1,求導函數,確定函數的極值點,進而可得k≤﹣3時,函數h(x)在區(qū)間[k,2]上的最大值為h(﹣3)=28;﹣3<k<2時,函數h(x)在區(qū)間[k,2]上的最大值小于28,由此可得結論.
【考點精析】解答此題的關鍵在于理解函數的最大(小)值與導數的相關知識,掌握求函數上的最大值與最小值的步驟:(1)求函數內的極值;(2)將函數的各極值與端點處的函數值,比較,其中最大的是一個最大值,最小的是最小值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F、G、H分別為AA1、AB、BB1、B1C1的中點,則異面直線EF與GH所成的角等于(

A.45°
B.60°
C.90°
D.120°

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=sin(2x+θ)+ cos(2x+θ),(|θ|< )的圖象關于點 對稱,則f(x)的增區(qū)間(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知:如圖,兩同心圓: . 為大圓上一動點,連結為坐標原點)交小圓于點,過點軸垂線(垂足為),再過點作直線的垂線,垂足為.

(1)當點在大圓上運動時,求垂足的軌跡方程;

(2)過點的直線交垂足的軌跡于兩點,若以為直徑的圓與軸相切,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示的一塊長方體木料中,已知AB=BC=4,AA1=1,設E為底面ABCD的中心,且 (0≤λ≤ ),則該長方體中經過點A1、E、F的截面面積的最小值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的表面積是(

A.90cm2
B.129cm2
C.132cm2
D.138cm2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我市某礦山企業(yè)生產某產品的年固定成本為萬元,每生產千件該產品需另投入萬元,設該企業(yè)年內共生產此種產品千件,并且全部銷售完,每千件的銷售收入為萬元,且

(Ⅰ)寫出年利潤(萬元)關于產品年產量(千件)的函數關系式;

(Ⅱ)問:年產量為多少千件時,該企業(yè)生產此產品所獲年利潤最大?

注:年利潤=年銷售收入-年總成本.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某特色餐館開通了美團外賣服務,在一周內的某特色菜外賣份數(份)與收入(元)之間有如下的對應數據:

外賣份數(份)

2

4

5

6

8

收入(元)

30

40

60

50

70

(1)畫出散點圖;

(2)求回歸直線方程;

(3)據此估計外賣份數為12份時,收入為多少元.

注:①參考公式:線性回歸方程系數公式 ;

②參考數據: ,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.

(1)證明CD⊥AE;
(2)證明PD⊥平面ABE;
(3)求二面角A﹣PD﹣C的正切值.

查看答案和解析>>

同步練習冊答案