用數(shù)學(xué)歸納法證明1+2+3+ +n
2=
,則當(dāng)n=k+1時(shí)左端應(yīng)在n=k的基礎(chǔ)上加上( )
A.k2+1 |
B.(k+1)2 |
C. |
D.(k2+1)+(k2+2)+ +(k+1)2 |
試題分析:當(dāng)
時(shí),
,當(dāng)
時(shí),
,所以
時(shí)左端應(yīng)在
的基礎(chǔ)上加上
.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
在數(shù)列
中,
,且
成等差數(shù)列,
成等比數(shù)列
.
(1)求
;
(2)根據(jù)計(jì)算結(jié)果,猜想
的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(8分)已知
是正實(shí)數(shù), 求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)f(x)=(1+x)n(x>-1,n∈N*)在點(diǎn)(0,1)處的切線L為y=g(x)
(Ⅰ)求切線L并判斷函數(shù)f(x)在x∈(-1,+∞)上的單調(diào)性;
(Ⅱ)求證:f(x)≥g(x)對(duì)任意的x∈(-1,+∞)都成立;
(Ⅲ)求證:已知m,n∈N*,Sm=1m+2m+…+nm,求證:nm+1<(m+1)Sm.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
一個(gè)建設(shè)集團(tuán)公司共有3n(n≥2,n∈N*)個(gè)施工隊(duì),編號(hào)分別為1,2,3,…3n.現(xiàn)有一項(xiàng)建設(shè)工程,因?yàn)楣と藬?shù)量和工作效率的差異,經(jīng)測(cè)算:如果第i(1≤i≤3n)個(gè)施工隊(duì)每天完成的工作量都相等,則它需要i天才能獨(dú)立完成此項(xiàng)工程.
(1)求證第n個(gè)施工隊(duì)用m(1≤m<n,m∈N*)天完成的工作量不可能大于第n+k(1≤k≤2n)個(gè)施工隊(duì)用m+k天完成的工作量;
(2)如果該集團(tuán)公司決定由編號(hào)為n+1,n+2,…,3n共2n個(gè)施工隊(duì)共同完成,求證它們最多不超過(guò)兩天即可完成此項(xiàng)工作.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
圖1,2,3,4分別包含1,5,13和25個(gè)互不重疊的單位正方形,按同樣的方式構(gòu)造圖形,則第
個(gè)圖包含______個(gè)互不重疊的單位正方形。
圖1 圖2 圖3 圖4
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
用數(shù)學(xué)歸納法證明
(
)時(shí),從“n=
”到“n=
”的證明,左邊需增添的代數(shù)式是___________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
用數(shù)學(xué)歸納法證明“
n3+(
n+1)
3+(
n+2)
3,(
n∈N
+)能被9整除”,要利
用歸納法假設(shè)證
n=
k+1時(shí)的情況,只需展開(kāi)( ).
A.(k+3)3 | B.(k+2)3 |
C.(k+1)3 | D.(k+1)3+(k+2)3 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
證明下列不等式:
(1)若
x,
y,
z∈R,
a,
b,
c∈R
+,則
z2≥2(
xy+
yz+
zx)
(2)若
x,
y,
z∈R
+,且
x+
y+
z=
xyz,則
≥2(
)
查看答案和解析>>