【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè),求證:當(dāng)時(shí),.

【答案】1)若時(shí),函數(shù)的單調(diào)遞增區(qū)間為;若時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)證明見(jiàn)解析.

【解析】

1)求出函數(shù)的導(dǎo)函數(shù),然后分類討論,當(dāng)時(shí),的單調(diào)增區(qū)間為,當(dāng)時(shí),的單調(diào)增區(qū)間為,單調(diào)遞減區(qū)間為,;

2)求出的導(dǎo)函數(shù) ,當(dāng)時(shí),上單調(diào)遞增,故而存在唯一的零點(diǎn),即,則當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增,從而可證得結(jié)論.

1)解:由函數(shù),

,

時(shí),,函數(shù)的單調(diào)遞增區(qū)間為

時(shí),,函數(shù)單調(diào)遞增,

時(shí),,函數(shù)單調(diào)遞減,

綜上,若時(shí),函數(shù)的單調(diào)遞增區(qū)間為,

時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,

2)證明:,

當(dāng)時(shí),上單調(diào)遞增,

1,

2

故而存在唯一的零點(diǎn),即

則當(dāng)時(shí),單調(diào)遞減;

當(dāng)時(shí),,單調(diào)遞增;

故而

,

函數(shù)的對(duì)稱軸為,

因?yàn)?/span>,所以,

因?yàn)楹瘮?shù)開(kāi)口向下,,

所以

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓ab0)的離心率,過(guò)點(diǎn)A0,-b)和Ba,0)的直線與原點(diǎn)的距離為

1)求橢圓的方程.

2)已知定點(diǎn)E-1,0),若直線ykx2k≠0)與橢圓交于C、D兩點(diǎn).問(wèn):是否存在k的值,使以CD為直徑的圓過(guò)E點(diǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面,. 

(1)證明:平面平面

(2)若,為棱的中點(diǎn),,,求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】賽季的歐洲冠軍聯(lián)賽八分之一決賽的首回合較量將于北京時(shí)間2018年2月15日3:45在伯納烏球場(chǎng)打響.由羅領(lǐng)銜的衛(wèi)冕冠軍皇家馬德里隊(duì)(以下簡(jiǎn)稱“皇馬”)將主場(chǎng)迎戰(zhàn)剛剛創(chuàng)下歐冠小組賽最多進(jìn)球記錄的法甲領(lǐng)頭羊巴黎圣日曼隊(duì)(以下簡(jiǎn)稱“巴黎”),激烈對(duì)決,一觸即發(fā).比賽分上,下兩個(gè)半場(chǎng)進(jìn)行,現(xiàn)在有加泰羅尼亞每題測(cè)皇馬,巴黎的每半場(chǎng)進(jìn)球數(shù)及概率如表:

0

1

2

巴黎

皇馬

(1)按照預(yù)測(cè),求巴黎在比賽中至少進(jìn)兩球的概率;

(2)按照預(yù)測(cè),若設(shè)為皇馬總進(jìn)球數(shù),為巴黎總進(jìn)球數(shù),求的分布列,并判斷的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱底面,,,分別為棱,的中點(diǎn).

1)求證:;

2)若,,求三棱錐的體積;

3)判斷直線與平面的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大衍數(shù)列,來(lái)源于《乾坤譜》中對(duì)易傳“大衍之?dāng)?shù)五十“的推論.主要用于解釋中國(guó)傳統(tǒng)文化中的太極衍生原理數(shù)列中的每一項(xiàng),都代表太極衍生過(guò)程中,曾經(jīng)經(jīng)歷過(guò)的兩儀數(shù)量總和是中華傳統(tǒng)文化中隱藏著的世界數(shù)學(xué)史上第一道數(shù)列題其規(guī)律是:偶數(shù)項(xiàng)是序號(hào)平方再除以2,奇數(shù)項(xiàng)是序號(hào)平方減1再除以2,其前10項(xiàng)依次是0,2,4,8,12,18,24,32,40,50,,如圖所示的程序框圖是為了得到大衍數(shù)列的前100項(xiàng)而設(shè)計(jì)的,那么在兩個(gè)判斷框中,可以先后填入( )

A. 是偶數(shù)?,? B. 是奇數(shù)?,?

C. 是偶數(shù)?, ? D. 是奇數(shù)?,?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·深圳二模)新零售模式的背景下,某大型零售公司為推廣線下分店,計(jì)劃在S市的A區(qū)開(kāi)設(shè)分店.為了確定在該區(qū)開(kāi)設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開(kāi)設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開(kāi)設(shè)分店的個(gè)數(shù),y表示這x個(gè)分店的年收入之和.

x(個(gè))

2

3

4

5

6

y(百萬(wàn)元)

2.5

3

4

4.5

6

(1)該公司已經(jīng)過(guò)初步判斷,可用線性回歸模型擬合yx的關(guān)系,求y關(guān)于x的線性回歸方程

(2)假設(shè)該公司在A區(qū)獲得的總年利潤(rùn)z(單位:百萬(wàn)元)x,y之間的關(guān)系為zy-0.05x2-1.4,請(qǐng)結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在A區(qū)開(kāi)設(shè)多少個(gè)分店時(shí),才能使A區(qū)平均每個(gè)分店的年利潤(rùn)最大?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于f(x)=4sin (xR),有下列命題

①由f(x1)=f(x2)=0可得x1x2π的整數(shù)倍;

yf(x)的表達(dá)式可改寫(xiě)成y=4cos;

yf(x)圖象關(guān)于對(duì)稱;

yf(x)圖象關(guān)于x=-對(duì)稱.

其中正確命題的序號(hào)為________(將你認(rèn)為正確的都填上)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知四棱錐的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都相等,四邊形為正方形,點(diǎn)的中點(diǎn),求異面直線所成角的余弦值.

2)如圖,在長(zhǎng)方體中,分別是的中點(diǎn),求異面直線所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案