【題目】在直角坐標(biāo)系中,已知圓的參數(shù)方程是(為參數(shù)).以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程是,射線(xiàn):與圓的交點(diǎn)為、兩點(diǎn),與直線(xiàn)的交點(diǎn)為.
(1)求圓的極坐標(biāo)方程;
(2)求線(xiàn)段的長(zhǎng).
【答案】(1)(2)
【解析】
(1)圓C的參數(shù)方程消去參數(shù),求出圓C的普通方程,由,,,即可求出圓C的極坐標(biāo)方程;
(2)設(shè)點(diǎn)的極坐標(biāo)為,將圓C的極坐標(biāo)方程與射線(xiàn)聯(lián)立,求出的極坐標(biāo),設(shè)點(diǎn)的極坐標(biāo)為,聯(lián)立直線(xiàn)的極坐標(biāo)方程與射線(xiàn)的極坐標(biāo)方程,求出的極坐標(biāo),即可求得線(xiàn)段的長(zhǎng).
解:(1)由題可得,圓的普通方程是,
即,
又,,,
所以圓的極坐標(biāo)方程是.
(2)設(shè)點(diǎn)的極坐標(biāo)為,
則有,
解得,
,
設(shè)點(diǎn)的極坐標(biāo)為,
則有,
解得,
,
由于,
所以,
所以線(xiàn)段的長(zhǎng)為5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的單調(diào)函數(shù)是奇函數(shù),當(dāng)時(shí),.
(1)求的解析式.
(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將曲線(xiàn)向左平移2個(gè)單位,再將得到的曲線(xiàn)上的每一個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來(lái)的,得到曲線(xiàn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,的極坐標(biāo)方程為.
(1)求曲線(xiàn)的參數(shù)方程;
(2)直線(xiàn)的參數(shù)方程為(為參數(shù)),求曲線(xiàn)上到直線(xiàn)的距離最短的點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程是.
(1)寫(xiě)出直線(xiàn)的極坐標(biāo)方程與曲線(xiàn)的直角坐標(biāo)方程;
(2)若點(diǎn)是曲線(xiàn)上的動(dòng)點(diǎn),求到直線(xiàn)距離的最小值,并求出此時(shí)點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小學(xué)要求下午放學(xué)后的17:00-18:00接學(xué)生回家,該學(xué)生家長(zhǎng)從下班后到達(dá)學(xué)校(隨機(jī))的時(shí)間為17:30-18:30,則該學(xué)生家長(zhǎng)從下班后,在學(xué)校規(guī)定時(shí)間內(nèi)接到孩子的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù),它的導(dǎo)函數(shù)為.
(1)當(dāng)時(shí),求的零點(diǎn);
(2)若函數(shù)存在極小值點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某芯片公司對(duì)今年新開(kāi)發(fā)的一批5G手機(jī)芯片進(jìn)行測(cè)評(píng),該公司隨機(jī)調(diào)查了100顆芯片,并將所得統(tǒng)計(jì)數(shù)據(jù)分為五個(gè)小組(所調(diào)查的芯片得分均在內(nèi)),得到如圖所示的頻率分布直方圖,其中.
(1)求這100顆芯片評(píng)測(cè)分?jǐn)?shù)的平均數(shù)(同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替).
(2)芯片公司另選100顆芯片交付給某手機(jī)公司進(jìn)行測(cè)試,該手機(jī)公司將每顆芯片分別裝在3個(gè)工程手機(jī)中進(jìn)行初測(cè)。若3個(gè)工程手機(jī)的評(píng)分都達(dá)到11萬(wàn)分,則認(rèn)定該芯片合格;若3個(gè)工程手機(jī)中只要有2個(gè)評(píng)分沒(méi)達(dá)到11萬(wàn)分,則認(rèn)定該芯片不合格;若3個(gè)工程手機(jī)中僅1個(gè)評(píng)分沒(méi)有達(dá)到11萬(wàn)分,則將該芯片再分別置于另外2個(gè)工程手機(jī)中進(jìn)行二測(cè),二測(cè)時(shí),2個(gè)工程手機(jī)的評(píng)分都達(dá)到11萬(wàn)分,則認(rèn)定該芯片合格;2個(gè)工程手機(jī)中只要有1個(gè)評(píng)分沒(méi)達(dá)到11萬(wàn)分,手機(jī)公司將認(rèn)定該芯片不合格.已知每顆芯片在各次置于工程手機(jī)中的得分相互獨(dú)立,并且芯片公司對(duì)芯片的評(píng)分方法及標(biāo)準(zhǔn)與手機(jī)公司對(duì)芯片的評(píng)分方法及標(biāo)準(zhǔn)都一致(以頻率作為概率).每顆芯片置于一個(gè)工程手機(jī)中的測(cè)試費(fèi)用均為300元,每顆芯片若被認(rèn)定為合格或不合格,將不再進(jìn)行后續(xù)測(cè)試,現(xiàn)手機(jī)公司測(cè)試部門(mén)預(yù)算的測(cè)試經(jīng)費(fèi)為10萬(wàn)元,試問(wèn)預(yù)算經(jīng)費(fèi)是否足夠測(cè)試完這100顆芯片?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn),且離心率為.
(1)求橢圓的方程;
(2)若點(diǎn)、在橢圓上,且四邊形是矩形,求矩形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)的普通方程及直線(xiàn)的直角坐標(biāo)方程;
(2)求曲線(xiàn)上的點(diǎn)到直線(xiàn)的距離的最大值與最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com