設(shè)函數(shù)其中
(1)若=0,求的單調(diào)區(qū)間;
(2)設(shè)表示兩個數(shù)中的最大值,求證:當(dāng)0≤x≤1時,||≤

(1),函數(shù)f(x)的單調(diào)增區(qū)間是(-∞,)及(1,+∞) .單調(diào)減區(qū)間是
(2)根據(jù)導(dǎo)數(shù)判定單調(diào)性,進而得到最值,然后來證明結(jié)論。

解析試題分析:解:(1)由=0,得a=b
當(dāng)時,則不具備單調(diào)性   ..2分
f(x)= ax3-2ax2+ax+c
=a(3x2-4x+1)=0,得x1=,x2=1.  3分
列表:

x
(-∞,)

(,1)
1
(1,+∞)

+
0
-
0
+
f(x)

極大值

極小值

由表可得,函數(shù)f(x)的單調(diào)增區(qū)間是(-∞,)及(1,+∞) .單調(diào)減區(qū)間是…5分
(2)當(dāng)時,=
 ,
,或,是單調(diào)函數(shù),,或
   7分
所以,
當(dāng)時,=3ax2-2(a+b)x+b=3
①當(dāng)時,則上是單調(diào)函數(shù),
所以,或≤<

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f (x) =
(1)試判斷當(dāng)的大小關(guān)系;
(2)試判斷曲線是否存在公切線,若存在,求出公切線方程,若不存在,說明理由;
(3)試比較 (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)與的大小,并寫出判斷過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知時有極值0。
(1)求常數(shù) 的值;
(2)求的單調(diào)區(qū)間。
(3)方程在區(qū)間[-4,0]上有三個不同的實根時實數(shù)的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若曲線在點處的切線與直線平行,求出這條切線的方程;
(Ⅱ)若,討論函數(shù)的單調(diào)區(qū)間;
(Ⅲ)對任意的,恒有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若的極值點,求實數(shù)的值;
(2)當(dāng)時,方程有實根,求實數(shù)的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),是否存在實數(shù),使函數(shù)在上遞減,在上遞增?若存在,求出所有值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若無極值點,但其導(dǎo)函數(shù)有零點,求的值;
(Ⅱ)若有兩個極值點,求的取值范圍,并證明的極小值小于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)當(dāng)時,求的最大值;
(2)令,以其圖象上任意一點為切點的切線的斜率恒成立,求實數(shù)的取值范圍;
(3)當(dāng)時,方程有唯一實數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求由曲線,所圍成的平面圖形的面積。

查看答案和解析>>

同步練習(xí)冊答案