【題目】定義區(qū)間[x1 , x2]長(zhǎng)度為x2﹣x1(x2>x1),已知函數(shù)f(x)= (a∈R,a≠0)的定義域與值域都是[m,n],則區(qū)間[m,n]取最大長(zhǎng)度時(shí)a的值是 .
【答案】3
【解析】解:函數(shù)f(x)= (a∈R,a≠0)的定義域是{x|x≠0},則[m,n]是其定義域的子集, ∴[m,n](﹣∞,0)或(0,+∞).
f(x)= = 在區(qū)間[m,n]上時(shí)增函數(shù),則有: ,
故m,n是方程f(x)= =x的同號(hào)相異的實(shí)數(shù)根,
即m,n是方程(ax)2﹣(a2+a)x+1=0同號(hào)相異的實(shí)數(shù)根.
那么mn= ,m+n= ,只需要△>0,
即(a2+a)2﹣4a2>0,解得:a>1或a<﹣3.
那么:n﹣m= = ,
故n﹣m的最大值為 ,此時(shí) ,解得:a=3.
即在區(qū)間[m,n]的最大長(zhǎng)度為 ,此時(shí)a的值等于3.
所以答案是3.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的定義域及其求法的相關(guān)知識(shí),掌握求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開(kāi)方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零,以及對(duì)函數(shù)的值域的理解,了解求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)雙曲線 =1(a>0,b>0)的右焦點(diǎn)F作一條直線,當(dāng)直線斜率為l時(shí),直線與雙曲線左、右兩支各有一個(gè)交點(diǎn);當(dāng)直線斜率為3時(shí),直線與雙曲線右支有兩個(gè)不同的交點(diǎn),則雙曲線離心率的取值范圍為( )
A.(1, )
B.(1, )
C.( , )
D.( , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)據(jù)顯示,某公司2018年上半年五個(gè)月的收入情況如下表所示:
月份 | 2 | 3 | 4 | 5 | 6 |
月收入(萬(wàn)元) | 1.4 | 2.56 | 5.31 | 11 | 21.3 |
根據(jù)上述數(shù)據(jù),在建立該公司2018年月收入(萬(wàn)元)與月份的函數(shù)模型時(shí),給出兩個(gè)函數(shù)模型與供選擇.
(1)你認(rèn)為哪個(gè)函數(shù)模型較好,并簡(jiǎn)單說(shuō)明理由;
(2)試用你認(rèn)為較好的函數(shù)模型,分析大約從第幾個(gè)月份開(kāi)始,該公司的月收入會(huì)超過(guò)100萬(wàn)元?(參考數(shù)據(jù),)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】美國(guó)對(duì)中國(guó)芯片的技術(shù)封鎖,這卻激發(fā)了中國(guó)“芯”的研究熱潮.某公司研發(fā)的,兩種芯片都已經(jīng)獲得成功.該公司研發(fā)芯片已經(jīng)耗費(fèi)資金千萬(wàn)元,現(xiàn)在準(zhǔn)備投入資金進(jìn)行生產(chǎn).經(jīng)市場(chǎng)調(diào)查與預(yù)測(cè),生產(chǎn)芯片的毛收入與投入的資金成正比,已知每投入千萬(wàn)元,公司獲得毛收入千萬(wàn)元;生產(chǎn)芯片的毛收入(千萬(wàn)元)與投入的資金(千萬(wàn)元)的函數(shù)關(guān)系為,其圖像如圖所示.
(1)試分別求出生產(chǎn),兩種芯片的毛收入(千萬(wàn)元)與投入資金(千萬(wàn)元)的函數(shù)關(guān)系式;
(2)如果公司只生產(chǎn)一種芯片,生產(chǎn)哪種芯片毛收入更大?
(3)現(xiàn)在公司準(zhǔn)備投入億元資金同時(shí)生產(chǎn),兩種芯片,設(shè)投入千萬(wàn)元生產(chǎn)芯片,用表示公司所過(guò)利潤(rùn),當(dāng)為多少時(shí),可以獲得最大利潤(rùn)?并求最大利潤(rùn).(利潤(rùn)芯片毛收入芯片毛收入研發(fā)耗費(fèi)資金)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線:和圓:.
(1)求證:直線恒過(guò)一定點(diǎn);
(2)試求當(dāng)為何值時(shí),直線被圓所截得的弦長(zhǎng)最短;
(3)在(2)的前提下,直線是過(guò)點(diǎn),且與直線平行的直線,求圓心在直線上,且與圓相外切的動(dòng)圓中半徑最小圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某賓館有間標(biāo)準(zhǔn)相同的客房,客房的定價(jià)將影響入住率.經(jīng)調(diào)查分析,得出每間客房的定價(jià)與每天的入住率的大致關(guān)系如下表:
每間客房的定價(jià) | 220元 | 200元 | 180元 | 160元 |
每天的入住率 |
對(duì)于每間客房,若有客住,則成本為80元;若空閑,則成本為40元.要使此賓館每天的住房利潤(rùn)最高,則每間客房的定價(jià)大致應(yīng)為( )
A. 220元 B. 200元 C. 180元 D. 160元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸建立極坐標(biāo)系.已知直線l的方程為4ρcosθ﹣ρsinθ﹣25=0,曲線W: (t是參數(shù)).
(1)求直線l的直角坐標(biāo)方程與曲線W的普通方程;
(2)若點(diǎn)P在直線l上,Q在曲線W上,求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),對(duì)于任意的 ,都有, 當(dāng)時(shí),,且.
( I ) 求的值;
(II) 當(dāng)時(shí),求函數(shù)的最大值和最小值;
(III) 設(shè)函數(shù),判斷函數(shù)g(x)最多有幾個(gè)零點(diǎn),并求出此時(shí)實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com