【題目】某省高考改革實施方案指出:該省高考考生總成績將由語文、數(shù)學(xué)、外語3門統(tǒng)一高考成績和學(xué)生自主選擇的學(xué)業(yè)水平等級性考試科目共同構(gòu)成.該省教育廳為了解正就讀高中的學(xué)生家長對高考改革方案所持的贊成態(tài)度,隨機從中抽取了100名城鄉(xiāng)家長作為樣本進行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見.下面是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.

(1)根據(jù)已知條件與等高條形圖完成下面的2×2列聯(lián)表,并判斷我們能否有95%的把握認為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?

(2)利用分層抽樣從持“不贊成”意見家長中抽取5名參加學(xué)校交流活動,從中選派2名家長發(fā)言,求恰好有1名城鎮(zhèn)居民的概率.

【答案】1)沒有把握;(2.

【解析】

(1)根據(jù)所給數(shù)據(jù)以及等高條形圖可完成列聯(lián)表,利用公式求出,與臨界值比較即可得結(jié)論;(2)利用列舉法,確定基本事件的個數(shù)以及符合條件的事件數(shù),再利用古典概型概率公式可求出恰好有1名城鎮(zhèn)居民的概率.

(1)完成列聯(lián)表,如下:

贊成

不贊成

合計

城鎮(zhèn)居民

30

15

45

農(nóng)村居民

45

10

55

合計

75

25

100

代入公式,得觀測值:


我們沒有的把握認為”贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”.
(2)城鄉(xiāng)戶口與農(nóng)村戶口比為抽取5人中城鎮(zhèn)戶口的有3人,

設(shè)為,農(nóng)村戶口的有2人,設(shè)為,

5人選2人共有,10種選法,

p>其中恰有1名城鎮(zhèn)戶口的有,6種,

所以恰有1名城鎮(zhèn)居民的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面為菱形,.

(1)證明:;

(2)若,,求二面角的余弦值的絕對值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片中,,在線段上取一點,沿著過點的直線將矩形右下角折起,使得右下角頂點恰好落在矩形的左邊邊上.設(shè)折痕所在直線與交于點,記折痕的長度為,翻折角

(1)探求的函數(shù)關(guān)系,推導(dǎo)出用表示的函數(shù)表達式;

(2)設(shè)的長為,求的取值范圍;

(3)確定點在何處時,翻折后重疊部分的圖形面積最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,它的一個頂點恰好是拋物線的焦點,離心率等于.

(1)求橢圓的方程;

(2)過橢圓的右焦點作直線交橢圓、兩點,交軸于點,若,,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中為自然對數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)若對任意,不等式恒成立,求實數(shù)的取值范圍;

(3)設(shè),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電子計算機誕生于20世紀中葉,是人類最偉大的技術(shù)發(fā)明之一.計算機利用二進制存儲信息,其中最基本單位是“位(bit)”,1位只能存放2種不同的信息:0或l,分別通過電路的斷或通實現(xiàn).“字節(jié)(Byte)”是更大的存儲單位,1Byte=8bit,因此1字節(jié)可存放從00000000(2)至11111111(2)共256種不同的信息.將這256個二進制數(shù)中,所有恰有相鄰兩位數(shù)是1其余各位數(shù)均是0的所有數(shù)相加,則計算結(jié)果用十進制表示為

A. 254B. 381C. 510D. 765

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于無窮數(shù)列,“若存在,必有”,則稱數(shù)列具有性質(zhì).

(1)若數(shù)列滿足,判斷數(shù)列是否具有性質(zhì)?是否具有性質(zhì)?

(2)對于無窮數(shù)列,設(shè),求證:若數(shù)列具有性質(zhì),則必為有限集;

(3)已知是各項均為正整數(shù)的數(shù)列,且既具有性質(zhì),又具有性質(zhì),是否存在正整數(shù),,使得,,…,,…成等差數(shù)列.若存在,請加以證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,點分別為的中點.

1)求證:平面平面EFD

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式m-|x-2|≥1,其解集為[0,4].

(1)m的值;

(2)a,b均為正實數(shù),且滿足abm,求a2b2的最小值.

查看答案和解析>>

同步練習(xí)冊答案