已知圓的方程為:,直線(xiàn)的方程為,點(diǎn)在直線(xiàn)上,過(guò)點(diǎn)作圓的切線(xiàn),切點(diǎn)為。
(1)若,求點(diǎn)的坐標(biāo)。
(2)若點(diǎn)的坐標(biāo)為,過(guò)點(diǎn)的直線(xiàn)與圓交于兩點(diǎn),當(dāng)時(shí),求直線(xiàn)的方程。
(3)求證:經(jīng)過(guò)三點(diǎn)的圓必經(jīng)過(guò)定點(diǎn),并求出所有定點(diǎn)的坐標(biāo)。
.解:(1)由條件,設(shè),則,解得或,所以點(diǎn)或點(diǎn)。(3分)
(2)由已知圓心到直線(xiàn)的距離為,設(shè)直線(xiàn)的方程為,則,解得或。
所以直線(xiàn)的方程為或。(8分)
(3)設(shè),過(guò)點(diǎn)的圓即是以為直徑的圓,其方程為:
,整理得
即
由得或,該圓必經(jīng)過(guò)定點(diǎn)和。(14分)
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044
已知圓的半徑為,圓心在直線(xiàn)y=2x上,圓被直x-y=0截得的弦長(zhǎng)為,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三5月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的離心率為,直線(xiàn):與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線(xiàn)過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線(xiàn)垂
直于點(diǎn),線(xiàn)段垂直平分線(xiàn)交于點(diǎn),求點(diǎn)的軌跡的方程;
(3)當(dāng)P不在軸上時(shí),在曲線(xiàn)上是否存在兩個(gè)不同點(diǎn)C、D關(guān)于對(duì)稱(chēng),若存在,
求出的斜率范圍,若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:河北省高三下學(xué)期第二次考試數(shù)學(xué)(文) 題型:解答題
(本題滿(mǎn)分12分)已知橢圓的離心率為,
直線(xiàn)與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切。
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線(xiàn)過(guò)點(diǎn)F1,且垂直于橢圓的長(zhǎng)軸,動(dòng)直
線(xiàn)垂直于點(diǎn)P,線(xiàn)段PF2的垂直平分線(xiàn)交于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;
(Ⅲ)若AC、BD為橢圓C1的兩條相互垂直的弦,垂足為右焦點(diǎn)F2,求四邊形ABCD的面積
的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com