(本題18分)已知橢圓C:的右焦點(diǎn)為B(1,0),右準(zhǔn)線與x軸的交點(diǎn)為A(5,0),過(guò)點(diǎn)A作直線交橢圓C于兩個(gè)不同的點(diǎn)P、Q.

(1)求橢圓C的方程;

(2)求直線斜率的取值范圍;

(3)是否存在直線,使得,若存在,求出的方程;若不存在,說(shuō)明理由.

 

 

 

 

 

 

 

 

解:( 1 ). ,即  所求橢圓方程為.   

(2)點(diǎn)A(5,0)在橢圓的外部,當(dāng)直線l的斜率不存在時(shí),直線l與橢圓C無(wú)交點(diǎn),

所以直線l斜率存在,設(shè)直線l的方程為

由方程組

依題意,得

(3)設(shè)交點(diǎn),PQ的中點(diǎn)為R,則

,      

,

BR⊥

,但不可能成立,

所以不存在直線 使得 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分18分)第一題滿分4分,第二題滿分6分,第三題滿分8分.

已知橢圓的長(zhǎng)軸長(zhǎng)是焦距的兩倍,其左、右焦點(diǎn)依次為,拋物線的準(zhǔn)線與軸交于,橢圓與拋物線的一個(gè)交點(diǎn)為.

(1)當(dāng)時(shí),求橢圓的方程;

(2)在(1)的條件下,直線過(guò)焦點(diǎn),與拋物線交于兩點(diǎn),若弦長(zhǎng)等于的周長(zhǎng),求直線的方程;

(3)由拋物線弧和橢圓弧

)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)為直角頂點(diǎn),另兩個(gè)頂點(diǎn)落在“拋橢圓”上的等腰直角三角形,若存在,求出兩直角邊所在直線的斜率;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分18分)第一題滿分4分,第二題滿分6分,第三題滿分8分.

已知橢圓的長(zhǎng)軸長(zhǎng)是焦距的兩倍,其左、右焦點(diǎn)依次為、,拋物線的準(zhǔn)線與軸交于,橢圓與拋物線的一個(gè)交點(diǎn)為.

(1)當(dāng)時(shí),求橢圓的方程;

(2)在(1)的條件下,直線過(guò)焦點(diǎn),與拋物線交于兩點(diǎn),若弦長(zhǎng)等于的周長(zhǎng),求直線的方程;

(3)由拋物線弧和橢圓弧

)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)為直角頂點(diǎn),另兩個(gè)頂點(diǎn)落在“拋橢圓”上的等腰直角三角形,若存在,求出兩直角邊所在直線的斜率;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案