分析 (1)利用等差數(shù)列的性質(zhì)列出方程,求出公差,然后求解通項公式.
(2)利用裂項法化簡求解數(shù)列的和即可.
解答 解:(1)由等差數(shù)列性質(zhì),S5=-5=5a3,∴a3=-1,
設公差為d,則(-1+d)2=(-1)•(-1+3d),解得d=0或d=-1,an=-1或an=2-n.
(2)①當an=-1時,Tn=n;
②當an=2-n時,$\frac{1}{{{a_{2n+1}}{a_{2n+3}}}}=\frac{1}{{({2n-1})({2n+1})}}=\frac{1}{2}({\frac{1}{2n-1}-\frac{1}{2n+1}})$,${T_n}=\frac{1}{2}({1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1}})=\frac{1}{2}({1-\frac{1}{2n+1}})=\frac{n}{2n+1}$.
點評 本題考查數(shù)列求和,等差數(shù)列的性質(zhì)的應用,考查計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1200 | B. | 3612 | C. | 3528 | D. | 1280 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | -4 | C. | -6 | D. | -10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $1\frac{15}{66}$ | B. | $1\frac{3}{22}$ | C. | $2\frac{15}{66}$ | D. | $2\frac{3}{22}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,3) | B. | (-$\frac{1}{2}$,2) | C. | (-$\frac{2}{3}$,4) | D. | (-$\frac{5}{9}$,3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com