如圖,在直三棱柱ABC-中,,D,E分別為BC,的中點(diǎn),的中點(diǎn),四邊形是邊長(zhǎng)為6的正方形.

(1)求證:平面;
(2)求證:平面;
(3)求二面角的余弦值.

(1)證明:連結(jié),與交于O點(diǎn),連結(jié)OD.
因?yàn)镺,D分別為和BC的中點(diǎn),
所以O(shè)D//。
又OD, ,
所以.…………………………4分
(2)證明:在直三棱柱中,
,
所以.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/92/2/1svqz2.gif" style="vertical-align:middle;" />為BC中點(diǎn),
所以,
所以.

因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic5/tikupic/b9/5/kmycg3.gif" style="vertical-align:middle;" />為正方形,D,E分別為BC,的中點(diǎn),
所以.
所以.     所以


(3)解:如圖,以的中點(diǎn)G為原點(diǎn),建立空間直角坐標(biāo)系,
則A(0,6,4),E(3,3,0) ,C(-3,6,0) ,.
由(Ⅱ)知為平面的一個(gè)法向量。
設(shè)為平面的一個(gè)法向量,


,則.
所以.
從而.
因?yàn)槎娼?img src="http://thumb.zyjl.cn/pic5/tikupic/5e/9/ma9cf2.gif" style="vertical-align:middle;" />為銳角,
所以二面角的余弦值為

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)如圖:在三棱錐中,已知點(diǎn)、、分別為棱、、的中點(diǎn).
(1)求證:∥平面;
(2)若,,求證:平面⊥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題分12分)
如圖,在長(zhǎng)方體中,
,中點(diǎn).
(Ⅰ)求證:;
(Ⅱ)在棱上是否存在一點(diǎn),使得平面?若存在,求的長(zhǎng);若不存在,說(shuō)明理由.
(Ⅲ)若二面角的大小為,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)四棱錐中,底面為矩形,側(cè)面底面,,,

(Ⅰ)證明:;
(Ⅱ)設(shè)與平面所成的角為,
求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)如圖,四棱錐中,底面為矩形,⊥底面,,點(diǎn)是棱的中點(diǎn).                                                   
(Ⅰ)求點(diǎn)到平面的距離;
(Ⅱ) 若,求二面角的平面角的余弦值 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,在直角梯形中,,,.將沿折起,使平面平面,得到幾何體,如圖2所示.

(1) 求證:平面;(2) 求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分) 已知正四棱錐PABCD中,底面是邊長(zhǎng)為2 的正方形,高為M為線段PC的中點(diǎn).
(Ⅰ) 求證:PA∥平面MDB
(Ⅱ) NAP的中點(diǎn),求CN與平面MBD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平行四邊形中,,,為線段的中線,將△沿直線翻折成△,使平面⊥平面,為線的中點(diǎn).
(1)求證:∥平面;
(2)設(shè)為線段的中點(diǎn),求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖所示,ABCD-A1B1C1D1是棱長(zhǎng)為6的正方體,E,F(xiàn)分別是棱AB,BC上的動(dòng)點(diǎn),且AE=BF.當(dāng)A1,E,F(xiàn),C1共面時(shí),平面A1DE與平面C1DF所成二面角的余弦值為(  )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案