分析 (1)設(shè)圓的圓心為(a,b),半徑為r,運用直線和圓相切的條件:d=r,解方程即可得到所求圓的方程;
(2)設(shè)直線l方程為nx+my-mn=0,由直線和圓相切的條件:d=r,化簡整理可得$m+n=\frac{mn+2}{2}$,運用基本不等式可得mn的最小值,即可得到所求三角形的面積的最小值.
解答 解;(1)設(shè)圓的圓心為(a,b),半徑為r,
由題意可得|a|=|b|=r,$\frac{|a+b|}{\sqrt{2}}$=r,
解得a=b=r=1,或a=b=-1,r=1,
可得圓C方程為(x-1)2+(y-1)2=1,或(x+1)2+(y+1)2=1.
(2)直線l方程為nx+my-mn=0,∵直線l與圓C:(x-1)2+(y-1)2=1相切,
∴$\frac{{|{n+m-mn}|}}{{\sqrt{{n^2}+{m^2}}}}=1$,
∴(n+m-mn)2=n2+m2,左邊展開,整理得,mn=2m+2n-2.∴$m+n=\frac{mn+2}{2}$.
∵$m>0,n>0,m+n≥2\sqrt{mn}$,
∴$\frac{mn+2}{2}≥2\sqrt{mn}$,∴${(\sqrt{mn})^2}-4\sqrt{mn}+2≥0$,
∴$\sqrt{mn}≥2+\sqrt{2},或\sqrt{mn}≤2-\sqrt{2}$.∵m>2,n>2,
∴$\sqrt{mn}≥2+\sqrt{2}$,∴mn≥6+4$\sqrt{2}$,
三角形AOB面積$s=\frac{1}{2}mn$≥3+2$\sqrt{2}$,
則m=n=2+$\sqrt{2}$時,取得最小值為3+2$\sqrt{2}$.
點評 本題考查圓的方程的求法和三角形的面積的最值,注意運用直線和圓相切的條件:d=r,以及基本不等式的運用,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{4}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
x | 1 | 2 | 3 |
p | $\frac{1}{3}$ | a | $\frac{1}{6}$ |
A. | $\frac{5}{6}$ | B. | $\frac{1}{2}$ | C. | $2a+\frac{5}{6}$ | D. | $\frac{11}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{7}{12}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {5,7} | B. | {2,4} | C. | {2,4,8} | D. | {1,3,5,6,7} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com