搖獎器有10個小球,其中8個小球上標有數(shù)字2,2個小球上標有數(shù)字5,現(xiàn)搖出3個小球,規(guī)定所得獎金(元)為這3個小球上記號之和,求此次搖獎獲得獎金數(shù)額的數(shù)學期望.
【答案】分析:由題意知,獲得獎金數(shù)額ξ的可取值為0,3(千元),9(千元),利用概率的乘法公式分別求出它們的概率,進而利用求期望的公式求得答案;
解答:解:設(shè)此次搖獎的獎金數(shù)額為ξ元,當搖出的3個小球均標有數(shù)字2時,ξ=6;
當搖出的3個小球中有2個標有數(shù)字2,1個標有數(shù)字5時,ξ=9;
當搖出的3個小球有1個標有數(shù)字2,2個標有數(shù)字5時,ξ=12.
所以,
Eξ=6×(元)   
答:此次搖獎獲得獎金數(shù)額的數(shù)字期望是元.
點評:本題主要考查了離散型隨機變量及其分布列和離散型隨機變量的期望與方差,屬于基礎(chǔ)題之列.期望是概率論和數(shù)理統(tǒng)計的重要概念之一,是反映隨機變量取值分布的特征數(shù),學習期望將為今后學習概率統(tǒng)計知識做鋪墊,它在市場預測,經(jīng)濟統(tǒng)計,風險與決策等領(lǐng)域有著廣泛的應(yīng)用,為今后學習數(shù)學及相關(guān)學科產(chǎn)生深遠的影響.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

搖獎器有10個小球,其中8個小球上標有數(shù)字2,2個小球上標有數(shù)字5,現(xiàn)搖出3個小球,規(guī)定所得獎金(元)為這3個小球上記號之和,求此次搖獎獲得獎金數(shù)額的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

搖獎器有10個小球,其中8個小球上標有數(shù)字2,2個小球上標有數(shù)字5,現(xiàn)搖出3個小球,規(guī)定所得獎金(元)為這3個小球上記號之和,求此次搖獎獲得獎金數(shù)額的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

搖獎器有10個小球,其中8個小球上標有數(shù)字2,2個小球上標有數(shù)字5,現(xiàn)搖出3個小球,規(guī)定所得獎金(元)為這3個小球上記號之和,求此次搖獎獲得獎金數(shù)額的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

搖獎器有10個小球,其中8個小球上標有數(shù)字2,2個小球上標有數(shù)字5,現(xiàn)搖出3個小球,規(guī)定所得獎金(元)為這3個小球上記號之和,求此次搖獎獲得獎金數(shù)額的數(shù)學期望.

查看答案和解析>>

同步練習冊答案