精英家教網 > 高中數學 > 題目詳情
如圖,點AB、C在數軸上,點BC關于點A對稱,若點A、B對應的實數分別是和-1,則點C所對應的實數是
A.B.C.D.
D

試題分析:因為B、C關于點A對稱,所以AB、C的中點,根據中點坐標公式可以得C對應的實數為
點評:中的坐標公式的應用十分廣泛,要靈活準確應用.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的左右焦點分別為、,離心率,直線經過左焦點.
(1)求橢圓的方程;
(2)若為橢圓上的點,求的范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

拋物線的準線與軸交于,焦點為,若橢圓為焦點、且離心率為.                   
(1)當時,求橢圓的方程;
(2)若拋物線與直線軸所圍成的圖形的面積為,求拋物線和直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在極坐標系中,已知圓經過點,圓心為直線與極軸的交點,求圓的極坐標方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知雙曲線的中心為原點,的焦點,過的直線相交于兩點,且的中點為,則的方程為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若直線與雙曲線的右支交于不同的兩點,那么的取值范圍是(  )
A.(B.(
C.(D.(

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知雙曲線的一條漸近線的斜率為,且右焦點與拋物線的焦點重合,則該雙曲線的方程為       

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓,左、右兩個焦點分別為,上頂點為正三角形且周長為6.
(1)求橢圓的標準方程及離心率;
(2)為坐標原點,是直線上的一個動點,求的最小值,并求出此時點的坐標.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓與曲線的離心率互為倒數,則(  )
A.16B.C.D.

查看答案和解析>>

同步練習冊答案