精英家教網 > 高中數學 > 題目詳情

(本題滿分16分)

設函數.

(Ⅰ) 判斷在區(qū)間上的增減性并證明之;

(Ⅱ) 若不等式恒成立, 求實數的取值范圍M

(Ⅲ)設,且,求證:.

解:(Ⅰ)∵  ∴…1分

    設   ……2分

上為減函數  又    時,

 ∴上是減函數                        ………4分

(Ⅱ)∵ ∴

 ∴…………………………6分

對一切恒成立 ,∴      ……………8分

(Ⅲ)顯然當時,不等式成立              ………………………10分

,原不等式等價于 ………11分

下面證明一個更強的不等式:…①

……②亦即 ……………………13分

由(1) 知上是減函數   又  ∴

∴不等式②成立,從而①成立  又

綜上有時,原不等式成立     …………………………16分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

本題滿分16分)兩個數列{an},{bn},滿足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
.★(參考公式1+22+32+…+n2=
n(n+1)(2n+1)
6

求證:{bn}為等差數列的充要條件是{an}為等差數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分16分)本題共有2個小題,第1小題滿分8分,第2小題滿分8分.

已知函數,、是常數,且),對定義域內任意),恒有成立.

(1)求函數的解析式,并寫出函數的定義域;

(2)求的取值范圍,使得

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分16分)已知數列的前項和為,且.數列中,

 .(1)求數列的通項公式;(2)若存在常數使數列是等比數列,求數列的通項公式;(3)求證:①;②

查看答案和解析>>

科目:高中數學 來源:江蘇省私立無錫光華學校2009—2010學年高二第二學期期末考試 題型:解答題

本題滿分16分)已知圓內接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數學 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數學卷(文) 題型:解答題

(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)

已知函數

(1)判斷并證明上的單調性;

(2)若存在,使,則稱為函數的不動點,現已知該函數有且僅有一個不動點,求的值;

(3)若上恒成立 , 求的取值范圍.

 

查看答案和解析>>

同步練習冊答案