已知函數(shù),其中.
(I)若函數(shù)在區(qū)間(1,2)上不是單調函數(shù),試求的取值范圍;
(II)已知,如果存在,使得函數(shù)在處取得最小值,試求的最大值.
(I)的取值范圍是;(II)的最大值為;
【解析】
試題分析:(I)由題意知,在區(qū)間(1,2)上有不重復的零點,
由,得,
因為,所以 3分
令,則,故在區(qū)間(1,2)上是增函數(shù),
所以其值域為,從而的取值范圍是 5分
(II),
由題意知對恒成立,
即對恒成立,
即 ①對恒成立 7分
當時,①式顯然成立; 8分
當時,①式可化為 ②,
令,則其圖象是開口向下的拋物線,所以
9分
即,其等價于 ③ ,
因為③在時有解,所以,解得.
從而的最大值為 12分
考點:本題主要考查應用導數(shù)研究函數(shù)的單調性、最值及不等式恒成立問題。
點評:典型題,本題屬于導數(shù)應用中的基本問題,通過研究函數(shù)的單調性,明確了極值情況。通過研究函數(shù)的單調區(qū)間、極值,最終確定最值情況。涉及恒成立問題,往往通過構造函數(shù),研究函數(shù)的最值,得到解題目的。
科目:高中數(shù)學 來源: 題型:
(09年大豐調研) (16分)
已知函數(shù)(其中) ,
點從左到右依次是函數(shù)圖象上三點,且.
(Ⅰ) 證明: 函數(shù)在上是減函數(shù);
(Ⅱ)求證:是鈍角三角形;
(Ⅲ) 試問,能否是等腰三角形?若能,求面積的最大值;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(06年天津卷文)(12分)
已知函數(shù)其中為參數(shù),且
(I)當時,判斷函數(shù)是否有極值;
(II)要使函數(shù)的極小值大于零,求參數(shù)的取值范圍;
(III)若對(II)中所求的取值范圍內的任意參數(shù),函數(shù)在區(qū)間內都是增函數(shù),求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆浙江省杭州市蕭山五校高二下期中理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)(其中常數(shù)a,b∈R)。 是奇函數(shù).
(Ⅰ)求的表達式;
(Ⅱ)求在區(qū)間[1,2]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年四川省成都市高三上學期九月診斷性考試理科數(shù)學卷 題型:解答題
(本題滿分12分)
已知函數(shù)其中a>0,e為自然對數(shù)的底數(shù)。
(I)求
(II)求的單調區(qū)間;
(III)求函數(shù)在區(qū)間[0,1]上的最大值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com