【題目】下列命題中正確的是( )
A.若命題p為真命題,命題q為假命題,則命題“p且q”為真命題
B.“ ”是“ ”的充分不必要條件
C.l為直線,α,β,為兩個不同的平面,若l⊥α,α⊥β,則l∥β
D.命題“?x∈R,2x>0”的否定是“?x0∈R, ≤0”
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任對全班50名學(xué)生學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:
積極參加班級工作 | 不太主動參加班級工作 | 合計 | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
(1)如果隨機抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)試運用獨立性檢驗的思想方法點撥:學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度是否有關(guān)系?并說明理由.(參考下表)
p(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.789 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (0<φ<π,ω>0)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為 .
(Ⅰ)求 的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移 個單位后,再將得到的圖象上各點的橫坐標(biāo)伸長到原來的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓 與直線 相切.
(1)求圓 的方程;
(2)過點 的直線 截圓所得弦長為 ,求直線 的方程;
(3)設(shè)圓 與 軸的負(fù)半軸的交點為 ,過點 作兩條斜率分別為 的直線交圓 于 兩點,且 ,證明:直線 恒過一個定點,并求出該定點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在 中,內(nèi)角 , , 所對的邊分別為 , , ,已知 , .
(1)當(dāng) 時,求 的面積;
(2)求 周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 , ,函數(shù) , .
(1)若 的最小值為-1,求實數(shù) 的值;
(2)是否存在實數(shù) ,使函數(shù) , 有四個不同的零點?若存在,求出 的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的上頂點M與左、右焦點F1、F2構(gòu)成三角形MF1F2面積為 ,又橢圓C的離心率為 .
(1)求橢圓C的方程;
(2)橢圓C的下頂點為N,過點T(t,2)(t≠0)的直線TM,TN分別與橢圓C交于E,F(xiàn)兩點.若△TMN的面積是△TEF的面積的k倍,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓上的點A(2,3)關(guān)于直線x+2y=0的對稱點仍在圓上,且與直線x﹣y+1=0相交的弦長為2 ,求圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com