【題目】圓周率是圓的周長(zhǎng)與直徑的比值,一般用希臘字母表示.早在公元480年左右,南北朝時(shí)期的數(shù)學(xué)家祖沖之就得出精確到小數(shù)點(diǎn)后7位的結(jié)果,他是世界上第一個(gè)把圓周率的數(shù)值計(jì)算到小數(shù)點(diǎn)后第7位的人,這比歐洲早了約1000年.生活中,我們也可以通過(guò)如下隨機(jī)模擬試驗(yàn)來(lái)估計(jì)的值:在區(qū)間內(nèi)隨機(jī)取個(gè)數(shù),構(gòu)成個(gè)數(shù)對(duì),設(shè),能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì)有對(duì),則通過(guò)隨機(jī)模擬的方法得到的的近似值為( )
A.B.C.D.
【答案】C
【解析】
根據(jù)在區(qū)間內(nèi)隨機(jī)取個(gè)數(shù),則有,試驗(yàn)的全部結(jié)果構(gòu)成以1為邊長(zhǎng)的正方形,其面積為1.因?yàn)?/span>,能與1構(gòu)成鈍角三角形,由余弦定理的及三角形知識(shí)得求得相應(yīng)的面積,再利用幾何概型的概率公式求解.
依題有,試驗(yàn)的全部結(jié)果構(gòu)成以1為邊長(zhǎng)的正方形,其面積為1.
因?yàn)?/span>,能與1構(gòu)成鈍角三角形,
由余弦定理的及三角形知識(shí)得,
構(gòu)成如圖陰影部分,
其面積為,
由幾何概型概率計(jì)算公式得,
解得.
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(1﹣sinx)ex.
(1)求f(x)在區(qū)間(0,π)的極值;
(2)證明:函數(shù)g(x)=f(x)﹣sinx﹣1在區(qū)間(﹣π,π)有且只有3個(gè)零點(diǎn),且之和為0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)求曲線的直角坐標(biāo)方程;
(2)已知點(diǎn),若直線與曲線交于不同的兩點(diǎn),當(dāng)最大時(shí),求出直線的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)若方程有三個(gè)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)在橢圓上,且橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)記橢圓的左、右頂點(diǎn)分別為,過(guò)點(diǎn)或作一條直線交橢圓于、(不與重合)兩點(diǎn),直線交于點(diǎn),記直線的斜率分別為.
①對(duì)于給定的,求的值;
②是否存在一個(gè)定值使得恒成立,若存在,求出值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車(chē)又稱(chēng)為小黃車(chē),近年來(lái)逐漸走進(jìn)了人們的生活,也成為減少空氣污染,緩解城市交通壓力的一種重要手段.為調(diào)查某地區(qū)居民對(duì)共享單車(chē)的使用情況,從該地區(qū)居民中按年齡用隨機(jī)抽樣的方式隨機(jī)抽取了人進(jìn)行問(wèn)卷調(diào)查,得到這人對(duì)共享單車(chē)的評(píng)價(jià)得分統(tǒng)計(jì)填入莖葉圖,如下所示(滿分分):
(1)找出居民問(wèn)卷得分的眾數(shù)和中位數(shù);
(2)請(qǐng)計(jì)算這位居民問(wèn)卷的平均得分;
(3)若在成績(jī)?yōu)?/span>分的居民中隨機(jī)抽取人,求恰有人成績(jī)超過(guò)分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,且).
(1)求函數(shù)的極值點(diǎn);
(2)當(dāng)時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中曲線的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程以及直線的直角坐標(biāo)方程;
(2)將曲線向左平移2個(gè)單位,再將曲線上的所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的,得到曲線,求曲線上的點(diǎn)到直線的距離的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com