函數(shù)y=2sin(
π
6
-2x),x∈[0,π])為增函數(shù)的區(qū)間是(  )
A、[0,
π
3
]
B、[
π
12
,
7
12
π
]
C、[
π
3
,
5
6
π
]
D、[
5
6
π
,π]
分析:先根據(jù)誘導(dǎo)公式進(jìn)行化簡,再由復(fù)合函數(shù)的單調(diào)性可知y=-2sin(2x-
π
6
)的增區(qū)間可由y=2sin(2x-
π
6
)的減區(qū)間得到,再由正弦函數(shù)的單調(diào)性可求出x的范圍,最后結(jié)合函數(shù)的定義域可求得答案.
解答:解:由y=2sin(
π
6
-2x)=-2sin(2x-
π
6
)其增區(qū)間可由y=2sin(2x-
π
6
)的減區(qū)間得到,
即2kπ+
π
2
≤2x-
π
6
≤2kπ+
3
2
π
,k∈Z
∴kπ+
π
3
≤x≤kπ+
5
6
π
,k∈Z.
令k=0,
π
3
≤x≤
5
6
π

故選C.
點(diǎn)評(píng):本題主要考查三角函數(shù)誘導(dǎo)公式的應(yīng)用和正弦函數(shù)的單調(diào)性.考查基礎(chǔ)知識(shí)的綜合應(yīng)用和靈活能力,三角函數(shù)的知識(shí)點(diǎn)比較多,內(nèi)容比較瑣碎,平時(shí)要注意積累基礎(chǔ)知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,點(diǎn)P是函數(shù)y=2sin(ωx+φ)(x∈R,ω>0)圖象的最高點(diǎn),M、N是圖象與x軸的交點(diǎn),若
PM
PN
=0,則ω=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sin(2x-
π
6
)
的圖象( 。
A、關(guān)于原點(diǎn)成中心對(duì)稱
B、關(guān)于y軸成軸對(duì)稱
C、關(guān)于(
π
12
,0)
成中心對(duì)稱
D、關(guān)于直線x=
π
12
成軸對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=-2sin(2x+
π3
)
取得最大值時(shí)所對(duì)應(yīng)x的取值集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個(gè)命題:
①函數(shù)y=2sin(2x-
π
3
)
的一條對(duì)稱軸是x=
12
;
②函數(shù)y=tanx的圖象關(guān)于點(diǎn)(
π
2
,0)對(duì)稱;
③正弦函數(shù)在第一象限為增函數(shù);
④若sin(2x1-
π
4
)=sin(2x2-
π
4
)
,則x1-x2=kπ,其中k∈Z.
以上四個(gè)命題中正確的有
 
(填寫正確命題前面的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:函數(shù)y=2sin3x的圖象向右平移
π
6
個(gè)單位后得到函數(shù)y=2sin(x-
π
6
)
的圖象;q:函數(shù)y=sin2x+2sinx-1的最大值為1.則下列命題中真命題為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案